Project description:Community-acquired pneumonia (CAP) is a leading cause of hospitalization and mortality in children. Diagnosis remains challenging and there are no reliable tools to objectively classify patients according to disease severity or predict clinical outcomes. Molecular distance to health (MDTH) is a genomic score that measures the global perturbation of the transcriptional profile that may help classify patients by disease severity. We assessed the value of MDTH to assess disease severity in children hospitalized with CAP.
Project description:Pneumonia severity index (PSI) is an important scoring system that can assess the severity of community acquired pneumonia and determine admission status. However, there is a lack of research on whether this scoring system can be applied to viral community acquired pneumonia. The purpose of this study was to evaluate the usefulness of PSI in viral community acquired pneumonia. This retrospective cohort study included 1,434 adult patients (aged ≥18 years) who were admitted to the emergency department of a university hospital during 2013-2015 because of community-acquired pneumonia. Viral infections were diagnosed by multiplex PCR. Patients diagnosed with non-viral community-acquired pneumonia were included in the control group (N = 1,173). The main outcome was 30-day all-cause mortality. multivariate Cox regression analyses were performed to calculate the risk of death. Respiratory viruses were detected in 261 (18.2%) patients with community-acquired pneumonia. Two types of respiratory viruses were detected in 7 cases. Of the 254 cases detected with only one virus, 62 were influenza A, 18 were influenza B, 65 were rhinovirus, 35 were respiratory syncytial virus, 25 were metapneumovirus, 20 were parainfluenza, 17 were coronavirus, 7 were bocavirus, and 5 were adenovirus. Mortality was not significantly different between patients with respiratory virus and those without respiratory virus; the 30-day all-cause mortality rates were 20.3% and 22.4%, respectively (P = 0.45). Mortality rate increased with an increasing PSI score with or without respiratory viral infection. Pulmonary severity index was significantly associated with mortality adjusted for respiratory virus detection (hazard ratio = 1.024, 95% confidence interval = 1.020-1.028). Pneumonia severity index score is an important factor for assessing the prognosis of patients with community-acquired pneumonia, regardless of respiratory virus detection.
Project description:BACKGROUND:This study aimed to determine whether community-acquired pneumonia (CAP) had a metabolic profile and whether this profile can be used for disease severity assessment. METHODS:A total of 175 individuals including 119 CAP patients and 56 controls were enrolled and divided into two cohorts. Serum samples from a discovery cohort (n = 102, including 38 non-severe CAP, 30 severe CAP, and 34 age and sex-matched controls) were determined by untargeted ultra-high-performance liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based metabolomics. Selected differential metabolites between CAP patients versus controls, and between the severe CAP group versus non-severe CAP group, were confirmed by targeted mass spectrometry assays in a validation cohort (n = 73, including 32 non-severe CAP, 19 severe CAP and 22 controls). Pearson's correlation analysis was performed to assess relationships between the identified metabolites and clinical severity of CAP. The area under the curve (AUC), sensitivity and specificity of the metabolites for predicting the severity of CAP were also investigated. RESULTS:The metabolic signature was markedly different between CAP patients and controls. Fifteen metabolites were found to be significantly dysregulated in CAP patients, which were mainly mapped to the metabolic pathways of sphingolipid, arginine, pyruvate and inositol phosphate. The alternation trends of five metabolites among the three groups including sphinganine, p-Cresol sulfate, dehydroepiandrosterone sulfate (DHEA-S), lactate and L-arginine in the validation cohort were consistent with those in the discovery cohort. Significantly lower concentrations of sphinganine, p-Cresol sulfate and DHEA-S were observed in CAP patients than in controls (p < 0.05). Serum lactate and sphinganine levels were positively correlated with confusion, urea level, respiratory rate, blood pressure, and age > 65 years (CURB-65), pneumonia severity index (PSI) and Acute Physiology and Chronic Health Evaluation II (APACHE II) scores, while DHEA-S inversely correlated with the three scoring systems. Combining lactate, sphinganine and DHEA-S as a metabolite panel for discriminating severe CAP from non-severe CAP exhibited a better AUC of 0.911 (95% confidence interval 0.825-0.998) than CURB-65, PSI and APACHE II scores. CONCLUSIONS:This study demonstrates that serum metabolomics approaches based on the LC-MS/MS platform can be applied as a tool to reveal metabolic changes during CAP and establish a metabolite signature related to disease severity. TRIAL REGISTRATION:ClinicalTrials.gov, NCT03093220 . Registered retrospectively on 28 March 2017.
Project description:BackgroundCompetitive interactions among bacteria in the respiratory tract microbiota influence which species can colonize and potentially contribute to pathogenesis of community-acquired pneumonia (CAP). However, understanding of the role of respiratory tract microbiota in the clinical course of pediatric CAP is limited.MethodsWe sought to compare microbiota profiles in induced sputum and nasopharyngeal/oropharyngeal (NP/OP) samples from children and to identify microbiota profiles associated with CAP severity. We used 16S ribosomal RNA sequencing and several measures of microbiota profiles, including principal component analysis (PCA), to describe the respiratory microbiota in 383 children, 6 months to <18 years, hospitalized with CAP. We examined associations between induced sputum and NP/OP microbiota profiles and CAP severity (hospital length of stay and intensive care unit admission) using logistic regression.ResultsRelative abundance of bacterial taxa differed in induced sputum and NP/OP samples. In children 6 months to < 5 years, the sputum PCA factor with high relative abundance of Actinomyces, Veillonella, Rothia, and Lactobacillales was associated with decreased odds of length of stay ≥ 4 days [adjusted odds ratio (aOR) 0.69; 95 % confidence interval (CI) 0.48-0.99]. The sputum factor with high relative abundance of Haemophilus and Pasteurellaceae was associated with increased odds of intensive care unit admission [aOR 1.52; 95 % CI 1.02-2.26]. In children 5 to < 18 years, the sputum factor with high relative abundance of Porphyromonadaceae, Bacteriodales, Lactobacillales, and Prevotella was associated with increased odds of length of stay ≥ 4 days [aOR 1.52; 95 % CI 1.02-2.26]. Taxa in NP/OP samples were not associated with CAP severity.ConclusionCertain taxa in the respiratory microbiota, which were detected in induced sputum samples, are associated with the clinical course of CAP.
Project description:This study found no association of the top two associated FER variants with severity of community-acquired pneumonia. Precise characterisation of phenotypes may be required in order to unravel the genetic mechanisms predisposing to poor outcome in sepsis. https://bit.ly/3jc9SmR.
Project description:Background: Community-acquired pneumonia (CAP) is a leading cause of hospitalization and mortality in children. Diagnosis remains challenging and there are no reliable tools to objectively risk stratify patients or predict clinical outcomes. Molecular distance to health (MDTH) is a genomic score that measures the global perturbation of the transcriptional profile and may help classify patients by disease severity. We evaluated the value of MDTH to assess disease severity in children hospitalized with CAP. Methods: Children hospitalized with CAP and matched healthy controls were enrolled in a prospective observational study. Blood samples were obtained for transcriptome analyses within 24 h of hospitalization. MDTH scores were calculated to assess disease severity and correlated with laboratory markers, such as white blood cell count, c-reactive protein (CRP), and procalcitonin (PCT), and clinical outcomes, including duration of fever and duration of hospitalization (LOS). Univariate and multivariable logistic regression were applied to assess factors associated with LOS and duration of fever after hospitalization. Results: Among children hospitalized with CAP (n = 152), pyogenic bacteria (PB) were detected in 16 (11%), Mycoplasma pneumoniae was detected in 41 (28%), respiratory viruses (RV) alone were detected in 78 (51%), and no pathogen was detected in 17 (11%) children. Statistical group comparisons identified 6,726 genes differentially expressed in patients with CAP vs. healthy controls (n = 39). Children with confirmed PB had higher MDTH scores than those with RV (p < 0.05) or M. pneumoniae (p < 0.01) detected alone. CRP (r = 0.39, p < 0.0001), PCT (r = 0.39, p < 0.0001), and MDTHs (r = 0.24, p < 0.01) correlated with duration of fever, while only MDTHs correlated with LOS (r = 0.33, p < 0.0001). Unadjusted analyses showed that both higher CRP and MDTHs were associated with longer LOS (OR 1.04 [1-1.07] and 1.12 [1.04-1.20], respectively), however, only MDTH remained significant when adjusting for other covariates (aOR 1.11 [1.01-1.22]). Conclusions: In children hospitalized with CAP MDTH score measured within 24 h of admission was independently associated with longer duration of hospitalization, regardless of the pathogen detected. This suggests that transcriptional biomarkers may represent a promising approach to assess disease severity in children with CAP.
Project description:Community-acquired pneumonia causes great mortality and morbidity and high costs worldwide. Empirical selection of antibiotic treatment is the cornerstone of management of patients with pneumonia. To reduce the misuse of antibiotics, antibiotic resistance, and side-effects, an empirical, effective, and individualised antibiotic treatment is needed. Follow-up after the start of antibiotic treatment is also important, and management should include early shifts to oral antibiotics, stewardship according to the microbiological results, and short-duration antibiotic treatment that accounts for the clinical stability criteria. New approaches for fast clinical (lung ultrasound) and microbiological (molecular biology) diagnoses are promising. Community-acquired pneumonia is associated with early and late mortality and increased rates of cardiovascular events. Studies are needed that focus on the long-term management of pneumonia.
Project description:BackgroundWe hypothesized that obstructive sleep apnea (OSA) can predispose individuals to lower airway infections and community-acquired pneumonia (CAP) due to upper airway microaspiration. This study evaluated the association between OSA and CAP.MethodsWe performed a case-control study that included 82 patients with CAP and 41 patients with other infections (control group). The controls were matched according to age, sex and body mass index (BMI). A respiratory polygraph (RP) was performed upon admission for patients in both groups. The severity of pneumonia was assessed according to the Pneumonia Severity Index (PSI). The associations between CAP and the Epworth Sleepiness Scale (ESS), OSA, OSA severity and other sleep-related variables were evaluated using logistic regression models. The associations between OSA, OSA severity with CAP severity were evaluated with linear regression models and non-parametric tests.FindingsNo significant differences were found between CAP and control patients regarding anthropometric variables, toxic habits and risk factors for CAP. Patients with OSA, defined as individuals with an Apnea-Hypopnea Index (AHI) ≥10, showed an increased risk of CAP (OR = 2·86, 95%CI 1·29-6·44, p = 0·01). Patients with severe OSA (AHI≥30) also had a higher risk of CAP (OR = 3·18, 95%CI 1·11-11·56, p = 0·047). In addition, OSA severity, defined according to the AHI quartile, was also significantly associated with CAP (p = 0·007). Furthermore, OSA was significantly associated with CAP severity (p = 0·0002), and OSA severity was also associated with CAP severity (p = 0·0006).ConclusionsOSA and OSA severity are associated with CAP when compared to patients admitted to the hospital for non-respiratory infections. In addition, OSA and OSA severity are associated with CAP severity. These results support the potential role of OSA in the pathogenesis of CAP and could have clinical implications. This link between OSA and infection risk should be explored to investigate the relationships among gastroesophageal reflux, silent aspiration, laryngeal sensory dysfunction and CAP.Trial registrationClinicalTrials.gov NCT01071421.
Project description:BackgroundA study was undertaken to validate the modified American Thoracic Society (ATS) rule and two British Thoracic Society (BTS) rules for the prediction of ICU admission and mortality of community acquired pneumonia and to provide a validation of these predictions on the basis of the pneumonia severity index (PSI).MethodSix hundred and ninety six consecutive patients (457 men (66%), mean (SD) age 67.8 (17.1) years, range 18-101) admitted to a tertiary care hospital were studied prospectively. Of these, 116 (16.7%) were admitted to the ICU.ResultsThe modified ATS rule achieved a sensitivity of 69% (95% CI 50.7 to 77.2), specificity of 97% (95% CI 96.4 to 98.9), positive predictive value of 87% (95% CI 78.3 to 93.1), and negative predictive value of 94% (95% CI 91.8 to 95.8) in predicting admission to the ICU. The corresponding predictive indices for mortality were 94% (95% CI 82.5 to 98.7), 93% (95% CI 90.6 to 94.7), 49% (95% CI 38.2 to 59.7), and 99.5% (95% CI 98.5 to 99.9), respectively. These figures compared favourably with both the BTS rules. The BTS-CURB criteria achieved predictions of pneumonia severity and mortality comparable to the PSI.ConclusionsThis study confirms the power of the modified ATS rule to predict severe pneumonia in individual patients. It may be incorporated into current guidelines for the assessment of pneumonia severity. The CURB criteria may be used as an alternative tool to PSI for the detection of low risk patients.