Project description:Ghrelin, the endogenous growth hormone secretagogue, has an important role in metabolic homeostasis. It exists in two major molecular forms: acylated (AG) and unacylated (UAG). Many studies suggest different roles for these two forms of ghrelin in energy balance regulation. In the present study, we compared the effects of acute intracerebroventricular administration of AG, UAG and their combination (AG+UAG) to young adult Wistar rats on food intake and central melanocortin system modulation. Although UAG did not affect food intake it significantly increased the number of c-Fos positive neurons in the arcuate (ARC), paraventricular (PVN) and solitary tract (NTS) nuclei. In contrast, UAG suppressed AG-induced neuronal activity in PVN and NTS. Central UAG also modulated hypothalamic expression of Mc4r and Bmp8b, which were increased and Mc3r, Pomc, Agrp and Ucp2, which were decreased. Finally, UAG, AG and combination treatments caused activation of c-Fos in POMC expressing neurons in the arcuate, substantiating a physiologic effect of these peptides on the central melanocortin system. Together, these results demonstrate that UAG can act directly to increase neuronal activity in the hypothalamus and is able to counteract AG-induced neuronal activity in the PVN and NTS. UAG also modulates expression of members of the melanocortin signaling system in the hypothalamus. In the absence of an effect on energy intake, these findings indicate that UAG could affect energy homeostasis by modulation of the central melanocortin system.
Project description:Empirical evidence suggests that heat exposure reduces food intake. However, the neurocircuit architecture and the signalling mechanisms that form an associative interface between sensory and metabolic modalities remain unknown, despite primary thermoceptive neurons in the pontine parabrachial nucleus becoming well characterized1. Tanycytes are a specialized cell type along the wall of the third ventricle2 that bidirectionally transport hormones and signalling molecules between the brain's parenchyma and ventricular system3-8. Here we show that tanycytes are activated upon acute thermal challenge and are necessary to reduce food intake afterwards. Virus-mediated gene manipulation and circuit mapping showed that thermosensing glutamatergic neurons of the parabrachial nucleus innervate tanycytes either directly or through second-order hypothalamic neurons. Heat-dependent Fos expression in tanycytes suggested their ability to produce signalling molecules, including vascular endothelial growth factor A (VEGFA). Instead of discharging VEGFA into the cerebrospinal fluid for a systemic effect, VEGFA was released along the parenchymal processes of tanycytes in the arcuate nucleus. VEGFA then increased the spike threshold of Flt1-expressing dopamine and agouti-related peptide (Agrp)-containing neurons, thus priming net anorexigenic output. Indeed, both acute heat and the chemogenetic activation of glutamatergic parabrachial neurons at thermoneutrality reduced food intake for hours, in a manner that is sensitive to both Vegfa loss-of-function and blockage of vesicle-associated membrane protein 2 (VAMP2)-dependent exocytosis from tanycytes. Overall, we define a multimodal neurocircuit in which tanycytes link parabrachial sensory relay to the long-term enforcement of a metabolic code.
Project description:Body weight (BW) is regulated in age-dependent manner; it continues to increase during growth period, and reaches a plateau once reaching adulthood. However, its underlying mechanism remains unknown. Regarding such mechanisms in the brain, we here report that neural circuits from the hypothalamus (paraventricular nucleus: PVN) to the brainstem (dorsal vagal complex: DVC) suppress late-onset BW gain without affecting food intake. The genetic suppression of the PVN-DVC circuit induced BW increase only in aged rats, indicating that this circuit contributes to suppress the BW at a fixed level after reaching adulthood. PVN neurons in the hypothalamus were inactive in younger rats but active in aged rats. The density of neuropeptide Y (NPY) terminal/fiber is reduced in the aged rat PVN area. The differences in neuronal activity, including oxytocin neurons in the PVN, were affected by the application of NPY or its receptor inhibitor, indicating that NPY is a possible regulator of this pathway. Our data provide new insights into understanding age-dependent BW regulation.
Project description:Sarcopenia, the decline in muscle mass and functionality during aging, might arise from age-associated endocrine dysfunction. Ghrelin is a hormone circulating in both acylated (AG) and unacylated (UnAG) forms with anti-atrophic activity on skeletal muscle. Here, we show that not only lifelong overexpression of UnAG (Tg) in mice, but also the deletion of ghrelin gene (Ghrl KO) attenuated the age-associated muscle atrophy and functionality decline, as well as systemic inflammation. Yet, the aging of Tg and Ghrl KO mice occurs with different dynamics: while old Tg mice seem to preserve the characteristics of young animals, Ghrl KO mice features deteriorate with aging. However, young Ghrl KO mice show more favorable traits compared to WT animals that result, on the whole, in better performances in aged Ghrl KO animals. Treatment with pharmacological doses of UnAG improved muscle performance in old mice without modifying the feeding behavior, body weight, and adipose tissue mass. The antiatrophic effect on muscle mass did not correlate with modifications of protein catabolism. However, UnAG treatment induced a strong shift towards oxidative metabolism in muscle. Altogether, these data confirmed and expanded some of the previously reported findings and advocate for the design of UnAG analogs to treat sarcopenia.
Project description:Cachexia is a wasting syndrome associated with cancer, AIDS, multiple sclerosis, and several other disease states. It is characterized by weight loss, fatigue, loss of appetite, and skeletal muscle atrophy and is associated with poor patient prognosis, making it an important treatment target. Ghrelin is a peptide hormone that stimulates growth hormone (GH) release and positive energy balance through binding to the receptor GHSR-1a. Only acylated ghrelin (AG), but not the unacylated form (UnAG), can bind GHSR-1a; however, UnAG and AG share several GHSR-1a-independent biological activities. Here we investigated whether UnAG and AG could protect against skeletal muscle atrophy in a GHSR-1a-independent manner. We found that both AG and UnAG inhibited dexamethasone-induced skeletal muscle atrophy and atrogene expression through PI3Kβ-, mTORC2-, and p38-mediated pathways in myotubes. Upregulation of circulating UnAG in mice impaired skeletal muscle atrophy induced by either fasting or denervation without stimulating muscle hypertrophy and GHSR-1a-mediated activation of the GH/IGF-1 axis. In Ghsr-deficient mice, both AG and UnAG induced phosphorylation of Akt in skeletal muscle and impaired fasting-induced atrophy. These results demonstrate that AG and UnAG act on a common, unidentified receptor to block skeletal muscle atrophy in a GH-independent manner.
Project description:Despite being unable to activate the cognate ghrelin receptor (GHS-R), unacylated ghrelin (UAG) possesses a unique activity spectrum that includes promoting bone marrow adipogenesis. Since a receptor mediating this action has not been identified, we re-appraised the potential interaction of UAG with GHS-R in the regulation of bone marrow adiposity. Surprisingly, the adipogenic effects of intra-bone marrow (ibm)-infused acylated ghrelin (AG) and UAG were abolished in male GHS-R-null mice. Gas chromatography showed that isolated tibial marrow adipocytes contain the medium-chain fatty acids utilised in the acylation of UAG, including octanoic acid. Additionally, immunohistochemistry and immunogold electron microscopy revealed that tibial marrow adipocytes show prominent expression of the UAG-activating enzyme ghrelin O-acyl transferase (GOAT), which is located in the membranes of lipid trafficking vesicles and in the plasma membrane. Finally, the adipogenic effect of ibm-infused UAG was completely abolished in GOAT-KO mice. Thus, the adipogenic action of exogenous UAG in tibial marrow is dependent upon acylation by GOAT and activation of GHS-R. This suggests that UAG is subject to target cell-mediated activation - a novel mechanism for manipulating hormone activity.
Project description:When energy balance is altered by aerobic exercise, starvation, and cold exposure, for example, there appears to be coordination of the responses of skeletal muscle, white adipose (WAT), and brown adipose (BAT) tissues. We hypothesized that WAT, BAT, and skeletal muscle may share an integrated regulation by the central nervous system (CNS); specifically, that neurons in brain regions associated with energy balance would possess neuroanatomical connections to permit coordination of multiple, complementary responses in these downstream tissues. To study this, we used trans-neuronal viral retrograde tract tracing, using isogenic strains of pseudorabies virus (PRV) with distinct fluorescent reporters (either eGFP or mRFP), injected pairwise into male rat gastrocnemius, subcutaneous WAT and interscapular BAT, coupled with neurochemical characterization of specific cell populations for cocaine- and amphetamine-related transcript (CART), oxytocin (OX), corticotrophin releasing hormone (CRH) and calcitonin gene-related peptide (CGRP). Cells in the paraventricular (PVN) and parabrachial (PBN) nuclei and brainstem showed dual projections to muscle + WAT, muscle + BAT, and WAT + BAT. Dual PRV-labeled cells were found in parvocellular, magnocellular and descending/pre-autonomic regions of the PVN, and multiple structural divisions of the PBN and brainstem. In most PBN subdivisions, more than 50% of CGRP cells dually projected to muscle + WAT and muscle + BAT. Similarly, 31-68% of CGRP cells projected both to WAT + BAT. However, dual PRV-labeled cells in PVN only occasionally expressed OX or CRH but not CART. These studies reveal for the first time both separate and shared outflow circuitries among skeletal muscle and subcutaneous WAT and BAT.
Project description:Focusing on the caprylic acid (C8:0), this study aimed at investigating the discrepancy between the formerly described beneficial effects of dietary medium chain fatty acids on body weight loss and the C8:0 newly reported effect on food intake via ghrelin octanoylation. During 6 weeks, Sprague-Dawley male rats were fed with three dietary C8:0 levels (0, 8 and 21% of fatty acids) in three experimental conditions (moderate fat, caloric restriction and high fat). A specific dose-response enrichment of the stomach tissue C8:0 was observed as a function of dietary C8:0, supporting the hypothesis of an early preduodenal hydrolysis of medium chain triglycerides and a direct absorption at the gastric level. However, the octanoylated ghrelin concentration in the plasma was unchanged in spite of the increased C8:0 availability. A reproducible decrease in the plasma concentration of unacylated ghrelin was observed, which was consistent with a decrease in the stomach preproghrelin mRNA and stomach ghrelin expression. The concomitant decrease of the plasma unacylated ghrelin and the stability of its acylated form resulted in a significant increase in the acylated/total ghrelin ratio which had no effect on body weight gain or total dietary consumption. This enhanced ratio measured in rats consuming C8:0 was however suspected to increase (i) growth hormone (GH) secretion as an increase in the GH-dependent mRNA expression of the insulin like growth Factor 1 (IGF-1) was measured (ii) adipocyte diameters in subcutaneous adipose tissue without an increase in the fat pad mass. Altogether, these results show that daily feeding with diets containing C8:0 increased the C8:0 level in the stomach more than all the other tissues, affecting the acylated/total ghrelin plasma ratio by decreasing the concentration of circulating unacylated ghrelin. However, these modifications were not associated with increased body weight or food consumption.
Project description:Sarcopenia, the progressive loss of muscle mass and dysfunction, universally affects the elderly and is closely associated with frailty and reduced quality of life. Despite the inevitable consequences of sarcopenia and its relevance to healthspan, no pharmacological therapies are currently available. Ghrelin is a gut-released hormone that increases appetite and body weight upon acylation, which activates its receptor GHSR1a. Recent studies have demonstrated that acyl and unacylated ghrelin are protective against acute pathological conditions of skeletal muscle. We hypothesized that both acyl ghrelin receptor agonist (HM01) and unacylated ghrelin ameliorate muscle atrophy and contractile dysfunction in oxidative stress-induced sarcopenia. HM01, unacylated ghrelin, or saline was delivered via osmotic pump. HM01 increased food consumption transiently, while the body weight remained elevated. It also decreased lean body mass and muscle mass of wildtype and Sod1KO. In contrast, unacylated ghrelin ameliorated loss of muscle mass by 15-30% in Sod1KO mice without changes in food consumption or body weights. Contractile force was decreased by ~30% in Sod1KO mice, but unacylated ghrelin prevented the force deficit by ~80%. We identified downregulation of transcription factor FoxO3a and its downstream E3 ligase MuRF1 by unacylated ghrelin. Our data show a direct role of unacylated ghrelin in redox-dependent sarcopenia independent of changes of food consumption or body weight.
Project description:ObjectiveAcylated ghrelin (AG) is a diabetogenic and orexigenic gastric polypeptide. These properties are not shared by the most abundant circulating form, which is unacylated (UAG). An altered UAG/AG profile together with an impairment of circulating endothelial progenitor cell (EPC) bioavailability were found in diabetes. Based on previous evidence for the beneficial cardiovascular effects of AG and UAG, we investigated their potential to revert diabetes-associated defects.Research design and methodsHealthy human subjects, individuals with type 2 diabetes, and ob/ob mice were AG or UAG infused. EPC mobilization in patients and mice was evaluated, and the underlying molecular mechanisms were investigated in bone marrow stromal cells. Recovered EPCs were also evaluated for the activity of senescence regulatory pathways and for NADPH oxidase activation by knocking down p47(phox) and Rac1. Finally, UAG modulation of human EPC vasculogenic potential was investigated in an in vivo mouse model.ResultsNeither AG nor UAG had any effect in healthy subjects. However, systemic administration of UAG, but not AG, prevented diabetes-induced EPC damage by modulating the NADPH oxidase regulatory protein Rac1 and improved the vasculogenic potential both in individuals with type 2 diabetes and in ob/ob mice. In addition, unlike AG, UAG facilitated the recovery of bone marrow EPC mobilization. Crucial to EPC mobilization by UAG was the rescue of endothelial NO synthase (eNOS) phosphorylation by Akt, as UAG treatment was ineffective in eNOS knockout mice. Consistently, EPCs expressed specific UAG-binding sites, not recognized by AG.ConclusionsThese data provide the rationale for clinical applications of UAG in pathologic settings where AG fails.