Inhibitory effect of ent-Sauchinone on amyloidogenesis via inhibition of STAT3-mediated NF-?B activation in cultured astrocytes and microglial BV-2 cells.
Ontology highlight
ABSTRACT: BACKGROUND: ent-Sauchinone is a polyphenolic compound found in plants belonging to the lignan family. ent-Sauchinone has been shown to modulate the expression of inflammatory factors through the nuclear factor-kappa B (NF-?B) signaling pathway. It is well known that neuroinflammation is associated with amyloidogenesis. Thus, in the present study, we investigated whether ent-Sauchinone could have anti-amyloidogenic effects through the inhibition of NF-?B pathways via its anti-inflammatory property. METHODS: To investigate the potential effect of ent-Sauchinone on anti-neuroinflammation and anti-amyloidogenesis in in vitro studies, we used microglial BV-2 cells and cultured astrocytes treated with ent-Sauchinone (1, 5, and 10 ?M) for 24 hours. For the detection of anti-neuro-inflammatory responses, reative oxygen species (ROS) and Nitric oxide (NO) generation and inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression were measured with assay kits and western blotting. ?-secretase and ?-secretase activities and ?-amyloid levels were determined for measuring the anti-amyloidogenic effects of ent-Sauchinone by enzyme assay kits. NF-?B and STAT3 signals were detected with electromobility shift assay (EMSA) to study the related signaling pathways. The binding of ent-Sauchinone to STAT3 was evaluated by a pull-down assay and by a docking model using Autodock VINA software (Hoover's Inc., Texas, United states). RESULTS: ent-Sauchinone (1, 5, and 10 ?M) effectively decreased lipopolysaccharide (LPS)-(1 ?g/ml) induced inflammatory responses through the reduction of ROS and NO generations and iNOS and COX-2 expressions in cultured astrocytes and microglial BV-2 cells. ent-Sauchinone also inhibited LPS-induced amyloidogenesis through the inhibition of ?-secretase and ?-secretase activity. NF- ?B amyloid and STAT3, critical transcriptional factors regulating not only inflammation but also amyloidogenesis, were also inhibited in a concentration dependent manner by ent-Sauchinone by blocking the phosphorylation of I ?B and STAT3 in cultured astrocytes and microglial BV-2 cells. The docking model approach showed that ent-Sauchinone binds to STAT3, and the employment of a STAT3 inhibitor and siRNA reversed ent-Sauchinone-induced inhibition NF-?B activation and A? generation. CONCLUSIONS: These results indicated that ent-Sauchinone inhibited neuroinflammation and amyloidogenesis through the inhibition of STAT3-mediated NF-?B activity, and thus could be applied in the treatment of neuro-inflammatory diseases, including Alzheimer's disease.
SUBMITTER: Song SY
PROVIDER: S-EPMC4090659 | biostudies-literature | 2014
REPOSITORIES: biostudies-literature
ACCESS DATA