Highly optimized DNA vaccine targeting human telomerase reverse transcriptase stimulates potent antitumor immunity.
Ontology highlight
ABSTRACT: High levels of human telomerase reverse transcriptase (hTERT) are detected in more than 85% of human cancers. Immunologic analysis supports that hTERT is a widely applicable target recognized by T cells and can be potentially studied as a broad cancer immunotherapeutic, or a unique line of defense against tumor recurrence. There remains an urgent need to develop more potent hTERT vaccines. Here, a synthetic highly optimized full-length hTERT DNA vaccine (phTERT) was designed and the induced immunity was examined in mice and non-human primates (NHP). When delivered by electroporation, phTERT elicited strong, broad hTERT-specific CD8 T-cell responses including induction of T cells expressing CD107a, IFN-?, and TNF-? in mice. The ability of phTERT to overcome tolerance was evaluated in an NHP model, whose TERT is 96% homologous to that of hTERT. Immunized monkeys exhibited robust [average 1,834 spot forming unit (SFU)/10(6) peripheral blood mononuclear cells (PBMC)], diverse (multiple immunodominant epitopes) IFN-? responses and antigen-specific perforin release (average 332 SFU/10(6) PBMCs), suggesting that phTERT breaks tolerance and induces potent cytotoxic responses in this human-relevant model. Moreover, in an HPV16-associated tumor model, vaccination of phTERT slows tumor growth and improves survival rate in both prophylactic and therapeutic studies. Finally, in vivo cytotoxicity assay confirmed that phTERT-induced CD8 T cells exhibited specific cytotoxic T lymphocyte (CTL) activity, capable of eliminating hTERT-pulsed target cells. These findings support that this synthetic electroporation-delivered DNA phTERT may have a role as a broad therapeutic cancer vaccine candidate.
SUBMITTER: Yan J
PROVIDER: S-EPMC4096936 | biostudies-literature | 2013 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA