Unknown

Dataset Information

0

Regime shift in sandy beach microbial communities following Deepwater Horizon oil spill remediation efforts.


ABSTRACT: Sandy beaches support a wide variety of underappreciated biodiversity that is critical to coastal ecosystems. Prior to the 2010 Deepwater Horizon oil spill, the diversity and function of supratidal beach sediment microbial communities along Gulf of Mexico coastlines were not well understood. As such, it was unclear if microbial community compositional changes would occur following exposure to beached oil, if indigenous communities could biodegrade oil, or how cleanup efforts, such as sand washing and sediment redistribution, would impact microbial ecosystem resiliency. Transects perpendicular to the shoreline were sampled from public beaches on Grand Isle, Louisiana, and Dauphin Island, Alabama, over one year. Prior to oil coming onshore, elevated levels of bacteria associated with fecal contamination were detected (e.g., Enterobacteriales and Campylobacterales). Over time, significant shifts within major phyla were identified (e.g., Proteobacteria, Firmicutes, Actinobacteria) and fecal indicator groups were replaced by taxa affiliated with open-ocean and marine systems (e.g., Oceanospirillales, Rhodospirillales, and Rhodobacterales). These new bacterial groups included putative hydrocarbon degraders, similar to those identified near the oil plume offshore. Shifts in the microbial community composition strongly correlated to more poorly sorted sediment and grain size distributional changes. Natural oceanographic processes could not account for the disrupted sediment, especially from the backshore well above the maximum high-tide levels recorded at these sites. Sand washing and tilling occurred on both open beaches from August through at least December 2010, which were mechanisms that could replace fecal indicator groups with open-ocean groups. Consequently, remediation efforts meant to return beaches to pre-spill compositions caused a regime shift that may have added potential ecosystem function, like hydrocarbon degradation, to the sediment. Future research will need to assess the persistence and impact of the newly formed microbial communities to the overall sandy beach ecosystems.

SUBMITTER: Engel AS 

PROVIDER: S-EPMC4103866 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

Regime shift in sandy beach microbial communities following Deepwater Horizon oil spill remediation efforts.

Engel Annette Summers AS   Gupta Axita A AA  

PloS one 20140718 7


Sandy beaches support a wide variety of underappreciated biodiversity that is critical to coastal ecosystems. Prior to the 2010 Deepwater Horizon oil spill, the diversity and function of supratidal beach sediment microbial communities along Gulf of Mexico coastlines were not well understood. As such, it was unclear if microbial community compositional changes would occur following exposure to beached oil, if indigenous communities could biodegrade oil, or how cleanup efforts, such as sand washin  ...[more]

Similar Datasets

| S-EPMC4542042 | biostudies-literature
| PRJNA796582 | ENA
| S-EPMC6422254 | biostudies-literature
| S-EPMC3528553 | biostudies-literature
| S-EPMC6526931 | biostudies-literature
| S-EPMC5040145 | biostudies-literature
| S-EPMC3528516 | biostudies-literature
| S-EPMC6788640 | biostudies-literature
| S-EPMC4069396 | biostudies-literature
| S-EPMC3528583 | biostudies-literature