Unknown

Dataset Information

0

Interaction between workers during a short time window is required for bacterial symbiont transmission in Acromyrmex leaf-cutting ants.


ABSTRACT: Stable associations between partners over time are critical for the evolution of mutualism. Hosts employ a variety of mechanisms to maintain specificity with bacterial associates. Acromyrmex leaf-cutting ants farm a fungal cultivar as their primary nutrient source. These ants also carry a Pseudonocardia Actinobacteria exosymbiont on their bodies that produces antifungal compounds that help inhibit specialized parasites of the ants' fungal garden. Major workers emerge from their pupal cases (eclose) symbiont-free, but exhibit visible Actinobacterial coverage within 14 days post-eclosion. Using subcolony experiments, we investigate exosymbiont transmission within Acromyrmex colonies. We found successful transmission to newly eclosed major workers fostered by major workers with visible Actinobacteria in all cases (100% acquiring, n?=?19). In contrast, newly eclosed major workers reared without exosymbiont-carrying major workers did not acquire visible Actinobacteria (0% acquiring, n?=?73). We further show that the majority of ants exposed to major workers with exosymbionts within 2 hours of eclosion acquired bacteria (60.7% acquiring, n?=?28), while normal acquisition did not occur when exposure occurred later than 2 hours post-eclosion (0% acquiring, n?=?18). Our findings show that transmission of exosymbionts to newly eclosed major workers occurs through interactions with exosymbiont-covered workers within a narrow time window after eclosion. This mode of transmission likely helps ensure the defensive function within colonies, as well as specificity and partner fidelity in the ant-bacterium association.

SUBMITTER: Marsh SE 

PROVIDER: S-EPMC4110003 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

Interaction between workers during a short time window is required for bacterial symbiont transmission in Acromyrmex leaf-cutting ants.

Marsh Sarah E SE   Poulsen Michael M   Pinto-Tomás Adrián A   Currie Cameron R CR  

PloS one 20140724 7


Stable associations between partners over time are critical for the evolution of mutualism. Hosts employ a variety of mechanisms to maintain specificity with bacterial associates. Acromyrmex leaf-cutting ants farm a fungal cultivar as their primary nutrient source. These ants also carry a Pseudonocardia Actinobacteria exosymbiont on their bodies that produces antifungal compounds that help inhibit specialized parasites of the ants' fungal garden. Major workers emerge from their pupal cases (eclo  ...[more]

Similar Datasets

| S-EPMC4510174 | biostudies-literature
| S-EPMC3281390 | biostudies-other
| S-EPMC5641371 | biostudies-literature
| S-EPMC3880420 | biostudies-literature
| S-EPMC3418327 | biostudies-literature
| S-EPMC8689564 | biostudies-literature
| S-EPMC8400888 | biostudies-literature
| S-EPMC3147664 | biostudies-literature
| S-EPMC4705864 | biostudies-other
| S-EPMC8611346 | biostudies-literature