Project description:We report the full polyprotein genomic sequence of a West Nile virus strain isolated from Eurasian magpies dying with neurologic signs in Greece. Our findings demonstrate the local genetic evolution of the West Nile virus strain responsible for a human disease outbreak in the country that began in 2010.
Project description:To determine the lineage of West Nile virus that caused outbreaks in Italy in 2008 and 2009, several West Nile virus strains were isolated from human specimens and sequenced. On the basis of phylogenetic analyses, the strains isolated constitute a distinct group within the western Mediterranean cluster.
Project description:West Nile virus RNA was detected in brain tissue from a horse that died in June 2003 in Nuevo Leon State, Mexico. Nucleotide sequencing and phylogenetic analysis of the premembrane and envelope genes showed that the virus was most closely related to West Nile virus isolates collected in Texas in 2002.
Project description:Phylogenetic relationships were examined for 29 southern African West Nile virus (formal name West Nile virus [WNV]) isolates from various sources in four countries from 1958 to 2001. In addition, sequence data were retrieved from GenBank for another 23 WNV isolates and Kunjin and Japanese encephalitis viruses. All isolates belonged to two lineages. Lineage 1 isolates were from central and North Africa, Europe, Israel, and North America; lineage 2 isolates were from central and southern Africa and Madagascar. No strict correlation existed between grouping and source of virus isolate, pathogenicity, geographic distribution, or year of isolation. Some southern African isolates have been associated with encephalitis in a human, a horse, and a dog and with fatal hepatitis in a human and death of an ostrich chick.
Project description:The West Nile virus (WNV), isolated in 1937, is an arbovirus (arthropod-borne virus) that infects thousands of people each year. Despite its burden on global health, little is known about the virus' biological and evolutionary dynamics. As several lineages are endemic in West Africa, we obtained the complete polyprotein sequence from three isolates from the early 1990s, each representing a different lineage. We then investigated differences in growth behavior and pathogenicity for four distinct West African lineages in arthropod (Ap61) and primate (Vero) cell lines, and in mice. We found that genetic differences, as well as viral-host interactions, could play a role in the biological properties in different WNV isolates in vitro, such as: (i) genome replication, (ii) protein translation, (iii) particle release, and (iv) virulence. Our findings demonstrate the endemic diversity of West African WNV strains and support future investigations into (i) the nature of WNV emergence, (ii) neurological tropism, and (iii) host adaptation.