Greater migratory propensity in hosts lowers pathogen transmission and impacts.
Ontology highlight
ABSTRACT: Animal migrations are spectacular and migratory species have been shown to transmit pathogens that pose risks to human health. Although migration is commonly assumed to enhance pathogen dispersal, empirical work indicates that migration can often have the opposite effect of lowering disease risk. Key to assessing disease threats to migratory species is the ability to predict how migratory behaviour influences pathogen invasion success and impacts on migratory hosts, thus motivating a mechanistic understanding of migratory host-pathogen interactions. Here, we develop a quantitative framework to examine pathogen transmission in animals that undergo two-way directed migrations between wintering and breeding grounds annually. Using the case of a pathogen transmitted during the host's breeding season, we show that a more extreme migratory strategy (defined by the time spent away from the breeding site and the total distance migrated) lowers the probability of pathogen invasion. Moreover, if migration substantially lowers the survival probability of infected animals, then populations that spend comparatively less time at the breeding site or that migrate longer distances are less vulnerable to pathogen-induced population declines. These findings provide theoretical support for two non-exclusive mechanisms proposed to explain how seasonal migration can lower infection risk: (i) escape from habitats where parasite transmission stages have accumulated and (ii) selective removal of infected hosts during strenuous journeys. Our work further suggests that barriers to long-distance movement could increase pathogen prevalence for vulnerable species, an effect already seen in some animal species undergoing anthropogenically induced migratory shifts.
SUBMITTER: Hall RJ
PROVIDER: S-EPMC4112027 | biostudies-literature | 2014 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA