Unknown

Dataset Information

0

Cyclic nucleotide phosphodiesterase 1 regulates lysosome-dependent type I collagen protein degradation in vascular smooth muscle cells.


ABSTRACT: The phenotypic modulation of vascular smooth muscle cells (VSMCs) to a synthetic phenotype is vital during pathological vascular remodeling and the development of various vascular diseases. An increase in type I collagen (collagen I) has been implicated in synthetic VSMCs, and cyclic nucleotide signaling is critical in collagen I regulation. Herein, we investigate the role and underlying mechanism of cyclic nucleotide phosphodiesterase 1 (PDE1) in regulating collagen I in synthetic VSMCs.The PDE1 inhibitor IC86340 significantly reduced collagen I in human saphenous vein explants undergoing spontaneous remodeling via ex vivo culture. In synthetic VSMCs, high basal levels of intracellular and extracellular collagen I protein were markedly decreased by IC86340. This attenuation was due to diminished protein but not mRNA. Inhibition of lysosome function abolished the effect of IC86340 on collagen I protein expression. PDE1C but not PDE1A is the major isoform responsible for mediating the effects of IC86340. Bicarbonate-sensitive soluble adenylyl cyclase/cAMP signaling was modulated by PDE1C, which is critical in collagen I degradation in VSMCs.These data demonstrate that PDE1C regulates soluble adenylyl cyclase/cAMP signaling and lysosome-mediated collagen I protein degradation, and they suggest that PDE1C plays a critical role in regulating collagen homeostasis during pathological vascular remodeling.

SUBMITTER: Cai Y 

PROVIDER: S-EPMC4114343 | biostudies-literature | 2011 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Cyclic nucleotide phosphodiesterase 1 regulates lysosome-dependent type I collagen protein degradation in vascular smooth muscle cells.

Cai Yujun Y   Miller Clint L CL   Nagel David J DJ   Jeon Kye-Im KI   Lim Soyeon S   Gao Pingjin P   Knight Peter A PA   Yan Chen C  

Arteriosclerosis, thrombosis, and vascular biology 20101209 3


<h4>Objective</h4>The phenotypic modulation of vascular smooth muscle cells (VSMCs) to a synthetic phenotype is vital during pathological vascular remodeling and the development of various vascular diseases. An increase in type I collagen (collagen I) has been implicated in synthetic VSMCs, and cyclic nucleotide signaling is critical in collagen I regulation. Herein, we investigate the role and underlying mechanism of cyclic nucleotide phosphodiesterase 1 (PDE1) in regulating collagen I in synth  ...[more]

Similar Datasets

| S-EPMC6514293 | biostudies-literature
| S-EPMC7407676 | biostudies-literature
| S-EPMC5880833 | biostudies-literature
| S-EPMC7693237 | biostudies-literature
| S-EPMC3687807 | biostudies-literature
| S-EPMC3934950 | biostudies-literature
| S-EPMC5276722 | biostudies-literature
| S-EPMC2929385 | biostudies-literature
| S-EPMC3350558 | biostudies-literature
| S-EPMC8429627 | biostudies-literature