Unknown

Dataset Information

0

Assessing cellular efficacy of bromodomain inhibitors using fluorescence recovery after photobleaching.


ABSTRACT: Acetylation of lysine residues in histone tails plays an important role in the regulation of gene transcription. Bromdomains are the readers of acetylated histone marks, and, consequently, bromodomain-containing proteins have a variety of chromatin-related functions. Moreover, they are increasingly being recognised as important mediators of a wide range of diseases. The first potent and selective bromodomain inhibitors are beginning to be described, but the diverse or unknown functions of bromodomain-containing proteins present challenges to systematically demonstrating cellular efficacy and selectivity for these inhibitors. Here we assess the viability of fluorescence recovery after photobleaching (FRAP) assays as a target agnostic method for the direct visualisation of an on-target effect of bromodomain inhibitors in living cells.Mutation of a conserved asparagine crucial for binding to acetylated lysines in the bromodomains of BRD3, BRD4 and TRIM24 all resulted in reduction of FRAP recovery times, indicating loss of or significantly reduced binding to acetylated chromatin, as did the addition of known inhibitors. Significant differences between wild type and bromodomain mutants for ATAD2, BAZ2A, BRD1, BRD7, GCN5L2, SMARCA2 and ZMYND11 required the addition of the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) to amplify the binding contribution of the bromodomain. Under these conditions, known inhibitors decreased FRAP recovery times back to mutant control levels. Mutation of the bromodomain did not alter FRAP recovery times for full-length CREBBP, even in the presence of SAHA, indicating that other domains are primarily responsible for anchoring CREBBP to chromatin. However, FRAP assays with multimerised CREBBP bromodomains resulted in a good assay to assess the efficacy of bromodomain inhibitors to this target. The bromodomain and extraterminal protein inhibitor PFI-1 was inactive against other bromodomain targets, demonstrating the specificity of the method.Viable FRAP assays were established for 11 representative bromodomain-containing proteins that broadly cover the bromodomain phylogenetic tree. Addition of SAHA can overcome weak binding to chromatin, and the use of tandem bromodomain constructs can eliminate masking effects of other chromatin binding domains. Together, these results demonstrate that FRAP assays offer a potentially pan-bromodomain method for generating cell-based assays, allowing the testing of compounds with respect to cell permeability, on-target efficacy and selectivity.

SUBMITTER: Philpott M 

PROVIDER: S-EPMC4115480 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

Assessing cellular efficacy of bromodomain inhibitors using fluorescence recovery after photobleaching.

Philpott Martin M   Rogers Catherine M CM   Yapp Clarence C   Wells Chris C   Lambert Jean-Philippe JP   Strain-Damerell Claire C   Burgess-Brown Nicola A NA   Gingras Anne-Claude AC   Knapp Stefan S   Müller Susanne S  

Epigenetics & chromatin 20140713


<h4>Background</h4>Acetylation of lysine residues in histone tails plays an important role in the regulation of gene transcription. Bromdomains are the readers of acetylated histone marks, and, consequently, bromodomain-containing proteins have a variety of chromatin-related functions. Moreover, they are increasingly being recognised as important mediators of a wide range of diseases. The first potent and selective bromodomain inhibitors are beginning to be described, but the diverse or unknown  ...[more]

Similar Datasets

| S-EPMC6818185 | biostudies-literature
| S-EPMC8248438 | biostudies-literature
| S-EPMC4399237 | biostudies-other
| S-EPMC5406284 | biostudies-literature
| S-EPMC1304253 | biostudies-literature
| S-EPMC1366654 | biostudies-literature