Project description:In order to survive, animals must quickly and accurately locate prey, predators, and conspecifics using the signals they generate. The signal source location can be estimated using multiple detectors and the inverse relationship between the received signal intensity (RSI) and the distance, but difficulty of the source localization increases if there is an additional dependence on the orientation of a signal source. In such cases, the signal source could be approximated as an ideal dipole for simplification. Based on a theoretical model, the RSI can be directly predicted from a known dipole location; but estimating a dipole location from RSIs has no direct analytical solution. Here, we propose an efficient solution to the dipole localization problem by using a lookup table (LUT) to store RSIs predicted by our theoretically derived dipole model at many possible dipole positions and orientations. For a given set of RSIs measured at multiple detectors, our algorithm found a dipole location having the closest matching normalized RSIs from the LUT, and further refined the location at higher resolution. Studying the natural behavior of weakly electric fish (WEF) requires efficiently computing their location and the temporal pattern of their electric signals over extended periods. Our dipole localization method was successfully applied to track single or multiple freely swimming WEF in shallow water in real-time, as each fish could be closely approximated by an ideal current dipole in two dimensions. Our optimized search algorithm found the animal's positions, orientations, and tail-bending angles quickly and accurately under various conditions, without the need for calibrating individual-specific parameters. Our dipole localization method is directly applicable to studying the role of active sensing during spatial navigation, or social interactions between multiple WEF. Furthermore, our method could be extended to other application areas involving dipole source localization.
Project description:Weakly electric fish are unique model systems in neuroethology, that allow experimentalists to non-invasively, access, central nervous system generated spatio-temporal electric patterns of pulses with roles in at least 2 complex and incompletely understood abilities: electrocommunication and electrolocation. Pulse-type electric fish alter their inter pulse intervals (IPIs) according to different behavioral contexts as aggression, hiding and mating. Nevertheless, only a few behavioral studies comparing the influence of different stimuli IPIs in the fish electric response have been conducted. We developed an apparatus that allows real time automatic realistic stimulation and simultaneous recording of electric pulses in freely moving Gymnotus carapo for several days. We detected and recorded pulse timestamps independently of the fish's position for days. A stimulus fish was mimicked by a dipole electrode that reproduced the voltage time series of real conspecific according to previously recorded timestamp sequences. We characterized fish behavior and the eletrocommunication in 2 conditions: stimulated by IPIs pre-recorded from other fish and random IPI ones. All stimuli pulses had the exact Gymontus carapo waveform. All fish presented a surprisingly long transient exploratory behavior (more than 8 h) when exposed to a new environment in the absence of electrical stimuli. Further, we also show that fish are able to discriminate between real and random stimuli distributions by changing several characteristics of their IPI distribution.
Project description:Weakly electric fish are unique model systems in neuroethology, that allow experimentalists to non-invasively, access, central nervous system generated spatio-temporal electric patterns of pulses with roles in at least 2 complex and incompletely understood abilities: electrocommunication and electrolocation. Pulse-type electric fish alter their inter pulse intervals (IPIs) according to different behavioral contexts as aggression, hiding and mating. Nevertheless, only a few behavioral studies comparing the influence of different stimuli IPIs in the fish electric response have been conducted. We developed an apparatus that allows real time automatic realistic stimulation and simultaneous recording of electric pulses in freely moving Gymnotus carapo for several days. We detected and recorded pulse timestamps independently of the fish's position for days. A stimulus fish was mimicked by a dipole electrode that reproduced the voltage time series of real conspecific according to previously recorded timestamp sequences. We characterized fish behavior and the eletrocommunication in 2 conditions: stimulated by IPIs pre-recorded from other fish and random IPI ones. All stimuli pulses had the exact Gymontus carapo waveform. All fish presented a surprisingly long transient exploratory behavior (more than 8 h) when exposed to a new environment in the absence of electrical stimuli. Further, we also show that fish are able to discriminate between real and random stimuli distributions by changing several characteristics of their IPI distribution.
Project description:Hybridization can act as a catalyst for rapid phenotypic evolution by introducing novel allelic combinations, which can affect hybrid phenotype through changes in gene expression. The African weakly electric fish use their muscle-derived electric organ to produce electric organ discharge (EOD) for electrocommunication and electrolocation. The EOD in genus Campylomormyrus and cross-species hybrids is usually species-specific and varies during ontogeny. We compared the gene expression patterns and allele specific expression between juvenile and adult individuals in C. compressirostris (EOD duration 0.4 ms in juvenile and 0.4 ms in adult), C. rhynchophorus (EOD duration 5 ms in juvenile and 40 ms in adult) and their hybrid (EOD duration 0.4 ms in juvenile and 4 ms in adult). Differentially expressed genes between juveniles and adults were highly enriched in “membrane”, “plasma membrane” and “cytoplasm” Go Ontogeny terms. We detected several potassium channel-related genes (e.g. KCNJ2, ADCYAP1) that are potentially involved in the EOD development during ontogeny. The alleles from C. compressirostris show dominant expression in the hybrid at juvenile and adult life stages. KCNJ2 is the only gene that exhibits allelic dominance of C. rhynchophorus allele, and has an increasing expression during ontogeny in this allele. This suggests that the EOD development in hybrids could be related to the increasing allelic expression of the C. rhynchophorus allele under the scenario of overall dominance of C. compressirostris alleles. Our study sheds light in the evolution of the electric organ discharge in electric fishes and on the role of introgressive hybridization in complex phenotypic traits.
Project description:Communication is key to a wide variety of animal behaviours and multiple modalities are often involved in this exchange of information from sender to receiver. The communication of African weakly electric fish, however, is thought to be predominantly unimodal and is mediated by their electric sense, in which species-specific electric organ discharges (EODs) are generated in a context-dependent and thus variable sequence of pulse intervals (SPI). While the primary function of the electric sense is considered to be electrolocation, both of its components likely carry information regarding identity of the sender. However, a clear understanding of their contribution to species recognition is incomplete. We therefore analysed these two electrocommunication components (EOD waveform and SPI statistics) in two sympatric mormyrid Campylomormyrus species. In a set of five playback conditions, we further investigated which components may drive interspecific recognition and discrimination. While we found that both electrocommunication components are species-specific, the cues necessary for species recognition differ between the two species studied. While the EOD waveform and SPI were both necessary and sufficient for species recognition in C. compressirostris males, C. tamandua males apparently utilize other, non-electric modalities. Mapped onto a recent phylogeny, our results suggest that discrimination by electric cues alone may be an apomorphic trait evolved during a recent radiation in this taxon.
Project description:Adaptations to an organism's environment often involve sensory system modifications. In this study, we address how evolutionary divergence in sensory perception relates to the physiological coding of stimuli. Mormyrid fishes that can detect subtle variations in electric communication signals encode signal waveform into spike-timing differences between sensory receptors. In contrast, the receptors of species insensitive to waveform variation produce spontaneously oscillating potentials. We found that oscillating receptors respond to electric pulses by resetting their phase, resulting in transient synchrony among receptors that encodes signal timing and location, but not waveform. These receptors were most sensitive to frequencies found only in the collective signals of groups of conspecifics, and this was correlated with increased behavioral responses to these frequencies. Thus, different perceptual capabilities correspond to different receptor physiologies. We hypothesize that these divergent mechanisms represent adaptations for different social environments. Our findings provide the first evidence for sensory coding through oscillatory synchrony.
Project description:In the African weakly electric fish genus Campylomormyrus, electric organ discharge signals are strikingly different in shape and duration among closely related species, contribute to prezygotic isolation, and may have triggered an adaptive radiation. We performed mRNA sequencing on electric organs and skeletal muscles (from which the electric organs derive) from 3 species with short (0.4 ms), medium (5 ms), and long (40 ms) electric organ discharges and 2 different cross-species hybrids. We identified 1,444 upregulated genes in electric organ shared by all 5 species/hybrid cohorts, rendering them candidate genes for electric organ-specific properties in Campylomormyrus. We further identified several candidate genes, including KCNJ2 and KLF5, and their upregulation may contribute to increased electric organ discharge duration. Hybrids between a short (Campylomormyrus compressirostris) and a long (Campylomormyrus rhynchophorus) discharging species exhibit electric organ discharges of intermediate duration and showed imbalanced expression of KCNJ2 alleles, pointing toward a cis-regulatory difference at this locus, relative to electric organ discharge duration. KLF5 is a transcription factor potentially balancing potassium channel gene expression, a crucial process for the formation of an electric organ discharge. Unraveling the genetic basis of the species-specific modulation of the electric organ discharge in Campylomormyrus is crucial for understanding the adaptive radiation of this emerging model taxon of ecological (perhaps even sympatric) speciation.
Project description:The precise timing of neuronal activity is critical for normal brain function. In weakly electric fish, the medullary pacemaker network (PN) sets the timing for an oscillating electric organ discharge (EOD) used for electric sensing. This network is the most precise biological oscillator known, with sub-microsecond variation in oscillator period. The PN consists of two principle sets of neurons, pacemaker and relay cells, that are connected by gap junctions and normally fire in synchrony, one-to-one with each EOD cycle. However, the degree of gap junctional connectivity between these cells appears insufficient to provide the population averaging required for the observed temporal precision of the EOD. This has led to the hypothesis that individual cells themselves fire with high precision, but little is known about the oscillatory dynamics of these pacemaker cells. As a first step towards testing this hypothesis, we have developed a biophysical model of a pacemaker neuron action potential based on experimental recordings. We validated the model by comparing the changes in oscillatory dynamics produced by different experimental manipulations. Our results suggest that this relatively simple model can capture a large range of channel dynamics exhibited by pacemaker cells, and will thus provide a basis for future work on network synchrony and precision.
Project description:African weakly electric fish of the mormyrid genus Campylomormyrus generate pulse-type electric organ discharges (EODs) for orientation and communication. Their pulse durations are species-specific and elongated EODs are a derived trait. So far, differential gene expression among tissue-specific transcriptomes across species with different pulses and point mutations in single ion channel genes indicate a relation of pulse duration and electrocyte geometry/excitability. However, a comprehensive assessment of expressed Single Nucleotide Polymorphisms (SNPs) throughout the entire transcriptome of African weakly electric fish, with the potential to identify further genes influencing EOD duration, is still lacking. This is of particular value, as discharge duration is likely based on multiple cellular mechanisms and various genes. Here we provide the first transcriptome-wide SNP analysis of African weakly electric fish species (genus Campylomormyrus) differing by EOD duration to identify candidate genes and cellular mechanisms potentially involved in the determination of an elongated discharge of C. tshokwe. Non-synonymous substitutions specific to C. tshokwe were found in 27 candidate genes with inferred positive selection among Campylomormyrus species. These candidate genes had mainly functions linked to transcriptional regulation, cell proliferation and cell differentiation. Further, by comparing gene annotations between C. compressirostris (ancestral short EOD) and C. tshokwe (derived elongated EOD), we identified 27 GO terms and 2 KEGG pathway categories for which C. tshokwe significantly more frequently exhibited a species-specific expressed substitution than C. compressirostris. The results indicate that transcriptional regulation as well cell proliferation and differentiation take part in the determination of elongated pulse durations in C. tshokwe. Those cellular processes are pivotal for tissue morphogenesis and might determine the shape of electric organs supporting the observed correlation between electrocyte geometry/tissue structure and discharge duration. The inferred expressed SNPs and their functional implications are a valuable resource for future investigations on EOD durations.
Project description:Gene duplication and subsequent molecular evolution can give rise to taxon-specific gene specializations. In previous work, we found evidence that African weakly electric fish (Mormyridae) may have as many as three copies of the epdl2 gene, and the expression of two epdl2 genes is correlated with electric signal divergence. Epdl2 belongs to the ependymin-related family (EPDR), a functionally diverse family of secretory glycoproteins. In this study, we first describe vertebrate EPDR evolution and then present a detailed evolutionary history of epdl2 in Mormyridae with emphasis on the speciose genus Paramormyrops. Using Sanger sequencing, we confirm three apparently functional epdl2 genes in Paramormyrops kingsleyae. Next, we developed a nanopore-based amplicon sequencing strategy and bioinformatics pipeline to obtain and classify full-length epdl2 gene sequences (N = 34) across Mormyridae. Our phylogenetic analysis proposes three or four epdl2 paralogs dating from early Paramormyrops evolution. Finally, we conducted selection tests which detected positive selection around the duplication events and identified ten sites likely targeted by selection in the resulting paralogs. These sites' locations in our modeled 3D protein structure involve four sites in ligand binding and six sites in homodimer formation. Together, these findings strongly imply an evolutionary mechanism whereby epdl2 genes underwent selection-driven functional specialization after tandem duplications in the rapidly speciating Paramormyrops. Considering previous evidence, we propose that epdl2 may contribute to electric signal diversification in mormyrids, an important aspect of species recognition during mating.