An experimental analysis of the heritability of variation in glucocorticoid concentrations in a wild avian population.
Ontology highlight
ABSTRACT: Glucocorticoid hormones (CORT) are predicted to promote adaptation to variable environments, yet little is known about the potential for CORT secretion patterns to respond to selection in free-living populations. We assessed the heritable variation underlying differences in hormonal phenotypes using a cross-foster experimental design with nestling North American barn swallows (Hirundo rustica erythrogaster). Using a bivariate animal model, we partitioned variance in baseline and stress-induced CORT concentrations into their additive genetic and rearing environment components and estimated their genetic correlation. Both baseline and stress-induced CORT were heritable with heritability of 0.152 and 0.343, respectively. We found that the variation in baseline CORT was best explained by rearing environment, whereas the variation in stress-induced CORT was contributed to by a combination of genetic and environmental factors. Further, we did not detect a genetic correlation between these two hormonal traits. Although rearing environment appears to play an important role in the secretion of both types of CORT, our results suggest that stress-induced CORT levels are underlain by greater additive genetic variance compared with baseline CORT levels. Accordingly, we infer that the glucocorticoid response to stress has a greater potential for evolutionary change in response to selection compared with baseline glucocorticoid secretion patterns.
SUBMITTER: Jenkins BR
PROVIDER: S-EPMC4123711 | biostudies-literature | 2014 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA