Proton-dependent zinc release from intracellular ligands.
Ontology highlight
ABSTRACT: In cultured cortical and hippocampal neurons when intracellular pH drops from 6.6 to 6.1, yet unclear intracellular stores release micromolar amounts of Zn(2+) into the cytosol. Mitochondria, acidic organelles, and/or intracellular ligands could release this Zn(2+) . Although exposure to the protonophore FCCP precludes reloading of the mitochondria and acidic organelles with Zn(2+) , FCCP failed to compromise the ability of the intracellular stores to repeatedly release Zn(2+) . Therefore, Zn(2+) -releasing stores were not mitochondria or acidic organelles but rather intracellular Zn(2+) ligands. To test which ligands might be involved, the rate of acid-induced Zn(2+) release from complexes with cysteine, glutathione, histidine, aspartate, glutamate, glycine, and carnosine was investigated; [Zn(2+) ] was monitored in vitro using the ratiometric Zn(2+) -sensitive fluorescent probe FuraZin-1. Carnosine failed to chelate Zn(2+) but did chelate Cu(2+) ; the remaining ligands chelated Zn(2+) and upon acidification were releasing it into the medium. However, when pH was decreasing from 6.6 to 6.1, only zinc-cysteine complexes rapidly accelerated the rate of Zn(2+) release. The zinc-cysteine complexes also released Zn(2+) when a histidine-modifying agent, diethylpyrocarbonate, was applied at pH 7.2. Since the cytosolic zinc-cysteine complexes can contain micromolar amounts of Zn(2+) , these complexes may represent the stores responsible for an acid-induced intracellular Zn(2+) release. This study aimed at identifying intracellular stores which release Zn(2+) when pHi drops from 6.6 to 6.1. It was found that these stores are not mitochondria or acidic organelles, but rather intracellular Zn(2+) ligands. When the pH was decreasing from 6.6 to 6.1, only zinc-cysteine complexes showed a rapid acceleration in the rate of Zn(2+) release. Therefore, the stores responsible for an acid-induced intracellular Zn(2+) release in neurons may be the cytosolic zinc-cysteine complexes.
SUBMITTER: Kiedrowski L
PROVIDER: S-EPMC4130388 | biostudies-literature | 2014 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA