Unknown

Dataset Information

0

Reference gene selection for quantitative real-time PCR normalization in Reaumuria soongorica.


ABSTRACT: Despite its superiority for evaluating gene expression, real-time quantitative polymerase chain reaction (qPCR) results can be significantly biased by the use of inappropriate reference genes under different experimental conditions. Reaumuria soongorica is a dominant species of desert ecosystems in arid central Asia. Given the increasing interest in ecological engineering and potential genetic resources for arid agronomy, it is important to analyze gene function. However, systematic evaluation of stable reference genes should be performed prior to such analyses. In this study, the stabilities of 10 candidate reference genes were analyzed under 4 kinds of abiotic stresses (drought, salt, dark, and heat) within 4 accessions (HG010, HG020, XGG030, and XGG040) from 2 different habitats using 3 algorithms (geNorm, NormFinder, and BestKeeper). After validation of the ribulose-1,5-bisphosphate carboxylase/oxygenase large unite (rbcL) expression pattern, our data suggested that histone H2A (H2A) and eukaryotic initiation factor 4A-2 (EIF4A2) were the most stable reference genes, cyclophilin (CYCL) was moderate, and elongation factor 1? (EF1?) was the worst choice. This first systematic analysis for stably expressed genes will facilitate future functional analyses and deep mining of genetic resources in R. soongorica and other species of the Reaumuria genus.

SUBMITTER: Yan X 

PROVIDER: S-EPMC4130609 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

Reference gene selection for quantitative real-time PCR normalization in Reaumuria soongorica.

Yan Xia X   Dong Xicun X   Zhang Wen W   Yin Hengxia H   Xiao Honglang H   Chen Peng P   Ma Xiao-Fei XF  

PloS one 20140812 8


Despite its superiority for evaluating gene expression, real-time quantitative polymerase chain reaction (qPCR) results can be significantly biased by the use of inappropriate reference genes under different experimental conditions. Reaumuria soongorica is a dominant species of desert ecosystems in arid central Asia. Given the increasing interest in ecological engineering and potential genetic resources for arid agronomy, it is important to analyze gene function. However, systematic evaluation o  ...[more]

Similar Datasets

| S-EPMC3329553 | biostudies-literature
| S-EPMC4019594 | biostudies-literature
| S-EPMC3534648 | biostudies-literature
| S-EPMC4450875 | biostudies-literature
| S-EPMC6434783 | biostudies-literature
| S-EPMC6329156 | biostudies-literature
| S-EPMC7522712 | biostudies-literature
| S-EPMC6613322 | biostudies-literature
| S-EPMC6999859 | biostudies-literature
| S-EPMC2761916 | biostudies-literature