Unknown

Dataset Information

0

Renal cortical hexokinase and pentose phosphate pathway activation through the EGFR/Akt signaling pathway in endotoxin-induced acute kidney injury.


ABSTRACT: While disruption of energy production is an important contributor to renal injury, metabolic alterations in sepsis-induced AKI remain understudied. We assessed changes in renal cortical glycolytic metabolism in a mouse model of sepsis-induced AKI. A specific and rapid increase in hexokinase (HK) activity (?2-fold) was observed 3 h after LPS exposure and maintained up to 18 h, in association with a decline in renal function as measured by blood urea nitrogen (BUN). LPS-induced HK activation occurred independently of HK isoform expression or mitochondrial localization. No other changes in glycolytic enzymes were observed. LPS-mediated HK activation was not sufficient to increase glycolytic flux as indicated by reduced or unchanged pyruvate and lactate levels in the renal cortex. LPS-induced HK activation was associated with increased glucose-6-phosphate dehydrogenase activity but not glycogen production. Mechanistically, LPS-induced HK activation was attenuated by pharmacological inhibitors of the EGF receptor (EGFR) and Akt, indicating that EGFR/phosphatidylinositol 3-kinase/Akt signaling is responsible. Our findings reveal LPS rapidly increases renal cortical HK activity in an EGFR- and Akt-dependent manner and that HK activation is linked to increased pentose phosphate pathway activity.

SUBMITTER: Smith JA 

PROVIDER: S-EPMC4137133 | biostudies-literature | 2014 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Renal cortical hexokinase and pentose phosphate pathway activation through the EGFR/Akt signaling pathway in endotoxin-induced acute kidney injury.

Smith Joshua A JA   Stallons L Jay LJ   Schnellmann Rick G RG  

American journal of physiology. Renal physiology 20140702 4


While disruption of energy production is an important contributor to renal injury, metabolic alterations in sepsis-induced AKI remain understudied. We assessed changes in renal cortical glycolytic metabolism in a mouse model of sepsis-induced AKI. A specific and rapid increase in hexokinase (HK) activity (∼2-fold) was observed 3 h after LPS exposure and maintained up to 18 h, in association with a decline in renal function as measured by blood urea nitrogen (BUN). LPS-induced HK activation occur  ...[more]

Similar Datasets

| S-EPMC4403500 | biostudies-literature
| S-EPMC7554817 | biostudies-literature
| S-EPMC8930976 | biostudies-literature
| S-EPMC4047866 | biostudies-literature
| S-EPMC10569227 | biostudies-literature
| S-EPMC5031559 | biostudies-literature
2016-08-18 | GSE74439 | GEO
| S-EPMC8482632 | biostudies-literature
| S-EPMC7986929 | biostudies-literature
| S-EPMC4917655 | biostudies-literature