Characterization of the enhanced bone regenerative capacity of human periodontal ligament stem cells engineered to express the gene encoding bone morphogenetic protein 2.
Ontology highlight
ABSTRACT: Human periodontal ligament stem cells (hPDLSCs) are considered an appropriate cell source for therapeutic strategies. The aims of this study were to investigate the sustainability of bone morphogenetic protein 2 (BMP2) secretion and the bone regenerative capacity of hPDLSCs that had been genetically modified to express the gene encoding BMP2 (BMP2). hPDLSCs isolated from healthy third molars were transduced using replication-deficient recombinant adenovirus (rAd) encoding BMP2 (hPDLSCs/rAd-BMP2), and the cellular characteristics and osteogenic potentials of hPDLSCs/rAd-BMP2 were analyzed both in vitro and in vivo. hPDLSCs/rAd-BMP2 successfully secreted BMP2, formed colonies, and expressed immunophenotypes similar to their nontransduced counterparts. As to their osteogenic potential, hPDLSCs/rAd-BMP2 formed greater mineralized nodules and exhibited significantly higher levels of expression of BMP2 and the gene encoding alkaline phosphatase, and formed more and better quality bone than other hPDLSC-containing or recombinant human BMP2-treated groups, being localized at the initial site until 8 weeks. The findings of the present study demonstrate that hPDLSCs/rAd-BMP2 effectively promote osteogenesis not only in vitro but also in vivo. The findings also suggest that hPDLSCs can efficiently carry and deliver BMP2, and that hPDLSCs/rAd-BMP2 could be used in an attractive novel therapeutic approach for the regeneration of deteriorated bony defects.
SUBMITTER: Jung IH
PROVIDER: S-EPMC4137350 | biostudies-literature | 2014 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA