Project description:Parkinson's disease (PD) is associated with the formation of ?-synuclein amyloid fibrils. Elucidating the role of these ?-sheet-rich fibrils in disease progression is crucial; however, collecting detailed structural information on amyloids is inherently difficult because of their insoluble, non-crystalline, and polymorphic nature. Here, we show that Raman spectroscopy is a facile technique for characterizing structural features of ?-synuclein fibrils. Combining Raman spectroscopy with aggregation kinetics and transmission electron microscopy, we examined the effects of pH and ionic strength as well as four PD-related mutations (A30P, E46K, G51D, and A53T) on ?-synuclein fibrils. Raman spectral differences were observed in the amide-I, amide-III, and fingerprint regions, indicating that secondary structure and tertiary contacts are influenced by pH and to a lesser extent by NaCl. Faster aggregation times appear to facilitate unique fibril structure as determined by the highly reproducible amide-I band widths, linking aggregation propensity and fibril polymorphism. Importantly, Raman spectroscopy revealed molecular-level perturbations of fibril conformation by the PD-related mutations that are not apparent through transmission electron microscopy or limited proteolysis. The amide-III band was found to be particularly sensitive, with G51D exhibiting the most distinctive features, followed by A53T and E46K. Relating to a cellular environment, our data would suggest that fibril polymorphs can be formed in different cellular compartments and potentially result in distinct phenotypes. Our work sets a foundation toward future cellular Raman studies of amyloids.
Project description:The deposition of coassemblies made of the small presynaptic protein, α-synuclein, and lipids in the brains of patients is the hallmark of Parkinson's disease. In this study, we used natural abundance 13C and 31P magic-angle spinning nuclear magnetic resonance spectroscopy together with cryo-electron microscopy and differential scanning calorimetry to characterize the fibrils formed by α-synuclein in the presence of vesicles made of 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine or 1,2-dilauroyl-sn-glycero-3-phospho-L-serine. Our results show that these lipids coassemble with α-synuclein molecules to give thin and curly amyloid fibrils. The coassembly leads to slower and more isotropic reorientation of lipid molecular segments and a decrease in both the temperature and enthalpy of the lipid chain-melting compared with those in the protein-free lipid lamellar phase. These findings provide new insights into the properties of lipids within protein-lipid assemblies that can be associated with Parkinson's disease.
Project description:Cell-to-cell transfer of α-synuclein (αS) is increasingly thought to play an important role in propagation of αS pathology, but mechanisms responsible for formation of initial αS seeds and factors facilitating their propagation remain unclear. We previously demonstrated that αS aggregates are formed rapidly in apoptotic neurons and that interaction between cytoplasmic αS and proaggregant nuclear factors generates seed-competent αS. We also provided initial evidence that histones have proaggregant properties. Since histones are released from cells undergoing apoptosis or cell stress, we hypothesized that internalization of histones into αS expressing cells could lead to intracellular αS aggregation. Here using mCherry-tagged histone, we show that nuclear extracts from apoptotic cells can induce intracellular αS inclusions after uptake into susceptible cells, while extracts from non-apoptotic cells did not. We also demonstrate that nuclear extracts from apoptotic cells contained histone-immunoreactive amyloid fibrils. Moreover, recombinant histone-derived amyloid fibrils are able to induce αS aggregation in cellular and animal models. Induction of αS aggregation by histone amyloid fibrils is associated with endocytosis-mediated rupture of lysosomes, and this effect can be enhanced in cells with chemically induced lysosomal membrane defects. These studies provide initial descriptions of the contribution of histone amyloid fibrils to αS aggregation.
Project description:BackgroundSynucleinopathy is a group of neurodegenerative disorders characterized by neurodegeneration and accumulation of alpha-synuclein (α-syn) aggregates in various brain regions. The detailed mechanism of α-syn-caused neurotoxicity remains obscure, which is partly due to the lack of a suitable model that retains the in vivo three-dimensional cellular network and allows a convenient dissection of the neurotoxic pathways. Recent studies revealed that the pre-formed recombinant α-syn amyloid fibrils (PFFs) induce a robust accumulation of pathogenic α-syn species in cultured cells and animals.ObjectiveOur goal is to determine whether PFFs are able to induce the pathogenic α-syn accumulation and neurotoxicity in organotypic brain slice culture, an ex vivo system that retains the in vivo three-dimensional cell-cell connections.Methods/resultsAdding PFFs to cultured wild-type rat or mouse brain slices induced a time-dependent accumulation of pathogenic α-syn species, which was indicated by α-syn phosphorylated at serine 129 (pα-syn). The PFF-induced pα-syn was abolished in brain slices prepared from α-syn null mice, suggesting that the pα-syn is from the phosphorylation of endogenous α-syn. Human PFFs also induced pα-syn in brain slices prepared from mice expressing human α-syn on a mouse α-syn-null background. Furthermore, the synaptophysin immunoreactivity was inversely associated with pα-syn accumulation and an increase of neuronal loss was detected.ConclusionPFF-treatment of brain slices is able to induce key pathological features of synucleinopathy: pα-syn accumulation and neurotoxicity. This model will be useful for investigating the neurotoxic mechanism and evaluating efficacy of therapeutic approaches.
Project description:The presence of ?SN fibrils indisputably associates with the development of synucleinopathies. However, while certain fibril morphologies have been linked to downstream pathological phenotypes, others appear less harmful, leading to the concept of fibril strains, originally described in relation to prion disease. Indeed, the presence of fibrils does not associate directly with neurotoxicity. Rather, it has been suggested that the toxic compounds are soluble amyloidogenic oligomers, potentially co-existing with fibrils. Here, combining synchrotron radiation circular dichroism, transmission electron microscopy and binding assays on native plasma membrane sheets, we reveal distinct biological and biophysical differences between initial and matured fibrils, transformed within the timespan of few days. Immature fibrils are reservoirs of membrane-binding species, which in response to even gentle experimental changes release into solution in a reversible manner. In contrast, mature fibrils, albeit macroscopically indistinguishable from their less mature counterparts, are structurally robust, shielding the solution from the membrane active soluble species. We thus show that particular biological activity resides transiently with the fibrillating sample, distinct for one, but not the other, spontaneously formed fibril polymorph. These results shed new light on the principles of fibril polymorphism with consequent impact on future design of assays and therapeutic development.
Project description:Protein aggregate formation is linked with multiple amyloidoses, including Alzheimer's and Parkinson's diseases. Currently, the understanding of such fibrillar structure formation and propagation is still not sufficient, the outcome of which is a lack of potent, anti-amyloid drugs. The environmental conditions used during in vitro protein aggregation assays play an important role in determining both the aggregation kinetic parameters, as well as resulting fibril structure. In the case of alpha-synuclein, ionic strength has been shown as a crucial factor in its amyloid aggregation. In this work, we examine a large sample size of alpha-synuclein aggregation reactions under thirty different ionic strength and protein concentration combinations and determine the resulting fibril structural variations using their dye-binding properties, secondary structure and morphology. We show that both ionic strength and protein concentration determine the structural variability of alpha-synuclein amyloid fibrils and that sometimes even identical conditions can result in up to four distinct types of aggregates.
Project description:High resolution atomic force microscopy is a powerful tool to characterize nanoscale morphological features of protein amyloid fibrils. Comparison of fibril morphological properties between studies has been hampered by differences in analysis procedures and measurement error determination used by various authors. We describe a fibril morphology analysis method that allows for quantitative comparison of features of amyloid fibrils of any amyloidogenic protein measured by atomic force microscopy. We have used tapping mode atomic force microscopy in liquid to measure the morphology of fibrillar aggregates of human wild-type alpha-synuclein and the disease-related mutants A30P, E46K, and A53T. Analysis of the images shows that fibrillar aggregates formed by E46K alpha-synuclein have a smaller diameter (9.0 +/- 0.8 nm) and periodicity (mode at 55 nm) than fibrils of wild-type alpha-synuclein (height 10.0 +/- 1.1 nm; periodicity has a mode at 65 nm). Fibrils of A30P have smaller diameter still (8.1 +/- 1.2 nm) and show a variety of periodicities. This quantitative analysis procedure enables comparison of the results with existing models for assembly of amyloid fibrils.
Project description:Fibrillar aggregates involved in neurodegenerative diseases have the ability to spread from one cell to another in a prion-like manner. The underlying molecular mechanisms, in particular the binding mode of the fibrils to cell membranes, are poorly understood. In this work we decipher the modality by which aggregates bind to the cellular membrane, one of the obligatory steps of the propagation cycle. By characterizing the binding properties of aggregates made of α-synuclein or huntingtin exon 1 protein displaying similar composition and structure but different lengths to mammalian cells we demonstrate that in both cases aggregates bind laterally to the cellular membrane, with aggregates extremities displaying little or no role in membrane binding. Lateral binding to artificial liposomes was also observed by transmission electron microscopy. In addition we show that although α-synuclein and huntingtin exon 1 fibrils bind both laterally to the cellular membrane, their mechanisms of interaction differ. Our findings have important implications for the development of future therapeutic tools that aim to block protein aggregates propagation in the brain.
Project description:alphaB-Crystallin is a small heat-shock protein (sHsp) that is colocalized with alpha-synuclein (alphaSyn) in Lewy bodies-the pathological hallmarks of Parkinson's disease-and is an inhibitor of alphaSyn amyloid fibril formation in an ATP-independent manner in vitro. We have investigated the mechanism underlying the inhibitory action of sHsps, and here we establish, by means of a variety of biophysical techniques including immunogold labeling and nuclear magnetic resonance spectroscopy, that alphaB-crystallin interacts with alphaSyn, binding along the length of mature amyloid fibrils. By measurement of seeded fibril elongation kinetics, both in solution and on a surface using a quartz crystal microbalance, this binding is shown to strongly inhibit further growth of the fibrils. The binding is also demonstrated to shift the monomer-fibril equilibrium in favor of dissociation. We believe that this mechanism, by which a sHsp interacts with mature amyloid fibrils, could represent an additional and potentially generic means by which at least some chaperones protect against amyloid aggregation and limit the onset of misfolding diseases.
Project description:The aggregation of proteins into amyloid fibrils is associated with several neurodegenerative diseases. In Parkinson's disease it is believed that the aggregation of alpha-synuclein (alpha-syn) from monomers by intermediates into amyloid fibrils is the toxic disease-causative mechanism. Here, we studied the structure of alpha-syn in its amyloid state by using various biophysical approaches. Quenched hydrogen/deuterium exchange NMR spectroscopy identified five beta-strands within the fibril core comprising residues 35-96 and solid-state NMR data from amyloid fibrils comprising the fibril core residues 30-110 confirmed the presence of beta-sheet secondary structure. The data suggest that beta1-strand interacts with beta2, beta2 with beta3, beta3 with beta4, and beta4 with beta5. High-resolution cryoelectron microscopy revealed the protofilament boundaries of approximately 2 x 3.5 nm. Based on the combination of these data and published structural studies, a fold of alpha-syn in the fibrils is proposed and discussed.