Unknown

Dataset Information

0

Nucleotide-dependent interactions within a specialized Hsp70/Hsp40 complex involved in Fe-S cluster biogenesis.


ABSTRACT: The structural mechanism by which Hsp70-type chaperones interact with Hsp40-type co-chaperones has been of great interest, yet still remains a matter of debate. Here, we used solution NMR spectroscopy to investigate the ATP-/ADP-dependent interactions between Escherichia coli HscA and HscB, the specialized Hsp70/Hsp40 molecular chaperones that mediate iron-sulfur cluster transfer. We observed that NMR signals assigned to amino acid residues in the J-domain and its "HPD" motif of HscB broadened severely upon the addition of ATP-bound HscA, but these signals were not similarly broadened by ADP-bound HscA or the isolated nucleotide binding domain of HscA complexed with either ATP or ADP. An HscB variant with an altered HPD motif, HscB(H32A,P33A,D34A), failed to manifest WT-like NMR signal perturbations and also abolished WT-like stimulation of ATP hydrolysis by HscA. In addition, residues 153-171 in the C-terminal region of HscB exhibited NMR signal perturbations upon interaction with HscA, alone or complexed with ADP or ATP. These results demonstrate that the HPD motif in the J-domain of HscB directly interacts with ATP-bound HscA and suggest that a second, less nucleotide-dependent binding site for HscA resides in the C-terminal region of HscB.

SUBMITTER: Kim JH 

PROVIDER: S-EPMC4140450 | biostudies-literature | 2014 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Nucleotide-dependent interactions within a specialized Hsp70/Hsp40 complex involved in Fe-S cluster biogenesis.

Kim Jin Hae JH   Alderson T Reid TR   Alderson T Reid TR   Frederick Ronnie O RO   Markley John L JL  

Journal of the American Chemical Society 20140806 33


The structural mechanism by which Hsp70-type chaperones interact with Hsp40-type co-chaperones has been of great interest, yet still remains a matter of debate. Here, we used solution NMR spectroscopy to investigate the ATP-/ADP-dependent interactions between Escherichia coli HscA and HscB, the specialized Hsp70/Hsp40 molecular chaperones that mediate iron-sulfur cluster transfer. We observed that NMR signals assigned to amino acid residues in the J-domain and its "HPD" motif of HscB broadened s  ...[more]

Similar Datasets

| S-EPMC7247549 | biostudies-literature
| S-EPMC2990340 | biostudies-literature
| S-EPMC6287258 | biostudies-literature
| S-EPMC6122992 | biostudies-literature
| S-EPMC4938735 | biostudies-literature
| S-EPMC7510350 | biostudies-literature
| S-EPMC8349188 | biostudies-literature
| S-EPMC514902 | biostudies-literature
| S-EPMC7479934 | biostudies-literature
| S-EPMC3387072 | biostudies-literature