Project description:PURPOSE:We examined the literature to elucidate the role of 18F-sodium fluoride (NaF)-PET in atherosclerosis. METHODS:Following a systematic search of PubMed/MEDLINE, Embase, and Cochrane Library included articles underwent subjective quality assessment with categories low, medium, and high. Of 2811 records, 1780 remained after removal of duplicates. Screening by title and abstract left 41 potentially eligible full-text articles, of which 8 (about the aortic valve (n = 1), PET/MRI feasibility (n = 1), aortic aneurysms (n = 1), or quantification methodology (n = 5)) were dismissed, leaving 33 published 2010-2012 (n = 6), 2013-2015 (n = 11), and 2016-2018 (n = 16) for analysis. RESULTS:They focused on coronary (n = 8), carotid (n = 7), and femoral arteries (n = 1), thoracic aorta (n = 1), and infrarenal aorta (n = 1). The remaining 15 studies examined more than one arterial segment. The literature was heterogeneous: few studies were designed to investigate atherosclerosis, 13 were retrospective, 9 applied both FDG and NaF as tracers, 24 NaF only. Subjective quality was low in one, medium in 13, and high in 19 studies. The literature indicates that NaF is a very specific tracer that mimics active arterial wall microcalcification, which is positively associated with cardiovascular risk. Arterial NaF uptake often presents before CT-calcification, tends to decrease with increasing density of CT-calcification, and appears, rather than FDG-avid foci, to progress to CT-calcification. It is mainly surface localized, increases with age with a wide scatter but without an obvious sex difference. NaF-avid microcalcification can occur in fatty streaks, but the degree of progression to CT-calcification is unknown. It remains unknown whether medical therapy influences microcalcification. The literature held no therapeutic or randomized controlled trials. CONCLUSION:The literature was heterogeneous and with few clear cut messages. NaF-PET is a new approach to detect and quantify microcalcification in early-stage atherosclerosis. NaF uptake correlates with cardiovascular risk factors and appears to be a good measure of the body's atherosclerotic burden, potentially suited also for assessment of anti-atherosclerotic therapy.
Project description:PurposeTo further characterize the relationship between obstructive sleep apnea (OSA) and carotid atherosclerosis, we examined the structural and metabolic features of carotid plaque using hybrid 18-F-fluorodeoxyglucose (FDG) Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) in the Multi-Ethnic Study of Atherosclerosis (MESA).MethodsWe studied 46 individuals from the MESA-PET and MESA-Sleep ancillary studies. OSA was defined as an apnea hypopnea index [AHI] ≥ 15 events per hour (4% desaturation). PET/MRI was used to measure carotid plaque inflammation (using target-to-background-ratios [TBR]) and carotid wall thickness (CWT). Linear regression was used to assess the associations between OSA, CWT and TBR.ResultsThe mean age was 67.9 years (SD 8.53) and the mean BMI was 28.9 kg/m2 (SD 4.47). There was a trend toward a higher mean CWT in the OSA (n = 11) vs. non-OSA group (n = 35), 1.51 vs. 1.41 (p = 0.098). TBR did not differ by OSA groups, and there was no significant association between OSA and carotid plaque inflammation (TBR) in adjusted analyses. Although there was a significant interaction between OSA and obesity, there were no statistically significant associations between OSA and vascular inflammation in stratified analysis by obesity.ConclusionDespite a trend toward a higher carotid wall thickness in OSA vs. non-OSA participants, we did not find an independent association between OSA and carotid plaque inflammation using PET/MRI in MESA. Our findings suggest that simultaneous assessments of structural and metabolic features of atherosclerosis may fill current knowledge gaps pertaining to the influence of OSA on atherosclerosis prevalence and progression.
Project description:Perivascular adipose tissue (PVAT) surrounding the human coronary arteries, secretes a wide range of adipocytokines affecting the biology of the adjacent vascular wall in a paracrine way. However, we have recently found that PVAT also behaves as a sensor of signals coming from the vascular wall, to which it reacts by changing its morphology and secretory profile. Indeed, vascular inflammation, a key feature of vascular disease pathogenesis, leads to the release of inflammatory signals that disseminate into local fat, inducing local lipolysis and inhibiting adipogenesis. This ability of PVAT to sense inflammatory signals from the vascular wall, can be used as a "thermometer" of the vascular wall, allowing for non-invasive detection of coronary inflammation. Vascular inflammation induces a shift of PVAT's composition from lipid to aqueous phase, resulting into increased computed tomography (CT) attenuation around the inflamed artery, forming a gradient with increasing attenuation closer to the inflamed coronary artery wall. These spatial changes in PVAT's attenuation are easily detected around culprit lesions during acute coronary syndromes. A new biomarker designed to captured these spatial changes in PVAT's attenuation around the human coronary arteries, the Fat Attenuation Index (FAI), has additional predictive value in stable patients for cardiac mortality and non-fatal heart attacks, above the prediction provided by the current state of the art that includes risk factors, calcium score and presence of high risk plaque features. The use of perivascular FAI in clinical practice may change the way we interpret cardiovascular CT angiography, as it is applicable to any coronary CT angiogram, and it offers dynamic information about the inflammatory burden of the coronary arteries, providing potential guidance for preventive measures and invasive treatments.
Project description:Osteoporosis is becoming an increasingly important public health issue, and effective treatments to prevent fragility fractures are available. Osteoporosis imaging is of critical importance in identifying individuals at risk for fractures who would require pharmacotherapy to reduce fracture risk and also in monitoring response to treatment. Dual x-ray absorptiometry is currently the state-of-the-art technique to measure bone mineral density and to diagnose osteoporosis according to the World Health Organization guidelines. Motivated by a 2000 National Institutes of Health consensus conference, substantial research efforts have focused on assessing bone quality by using advanced imaging techniques. Among these techniques aimed at better characterizing fracture risk and treatment effects, high-resolution peripheral quantitative computed tomography (CT) currently plays a central role, and a large number of recent studies have used this technique to study trabecular and cortical bone architecture. Other techniques to analyze bone quality include multidetector CT, magnetic resonance imaging, and quantitative ultrasonography. In addition to quantitative imaging techniques measuring bone density and quality, imaging needs to be used to diagnose prevalent osteoporotic fractures, such as spine fractures on chest radiographs and sagittal multidetector CT reconstructions. Radiologists need to be sensitized to the fact that the presence of fragility fractures will alter patient care, and these fractures need to be described in the report. This review article covers state-of-the-art imaging techniques to measure bone mineral density, describes novel techniques to study bone quality, and focuses on how standard imaging techniques should be used to diagnose prevalent osteoporotic fractures.
Project description:Diffuse gliomas are infiltrative primary brain tumors with a poor prognosis despite multimodal treatment. Maximum safe resection is recommended whenever feasible. The extent of resection (EOR) is positively correlated with survival. Identification of glioma tissue during surgery is difficult due to its diffuse nature. Therefore, glioma resection is imaging-guided, making the choice for imaging technique an important aspect of glioma surgery. The current standard for resection guidance in non-enhancing gliomas is T2 weighted or T2w-fluid attenuation inversion recovery magnetic resonance imaging (MRI), and in enhancing gliomas T1-weighted MRI with a gadolinium-based contrast agent. Other MRI sequences, like magnetic resonance spectroscopy, imaging modalities, such as positron emission tomography, as well as intraoperative imaging techniques, including the use of fluorescence, are also available for the guidance of glioma resection. The neurosurgeon's goal is to find the balance between maximizing the EOR and preserving brain functions since surgery-induced neurological deficits result in lower quality of life and shortened survival. This requires localization of important brain functions and white matter tracts to aid the pre-operative planning and surgical decision-making. Visualization of brain functions and white matter tracts is possible with functional MRI, diffusion tensor imaging, magnetoencephalography, and navigated transcranial magnetic stimulation. In this review, we discuss the current available imaging techniques for the guidance of glioma resection and the localization of brain functions and white matter tracts.
Project description:Reducing the incidence and prevalence of standard modifiable cardiovascular risk factors (SMuRFs) is critical to tackling the global burden of coronary artery disease (CAD). However, a substantial number of individuals develop coronary atherosclerosis despite no SMuRFs. SMuRFless patients presenting with myocardial infarction have been observed to have an unexpected higher early mortality compared to their counterparts with at least 1 SMuRF. Evidence for optimal management of these patients is lacking. We assembled an international, multidisciplinary team to develop an evidence-based clinical pathway for SMuRFless CAD patients. A modified Delphi method was applied. The resulting pathway confirms underlying atherosclerosis and true SMuRFless status, ensures evidence-based secondary prevention, and considers additional tests and interventions for less typical contributors. This dedicated pathway for a previously overlooked CAD population, with an accompanying registry, aims to improve outcomes through enhanced adherence to evidence-based secondary prevention and additional diagnosis of modifiable risk factors observed.
Project description:Molecular imaging techniques are increasingly being used in addition to standard imaging methods such as endoscopic ultrasound (EUS) and computed tomography (CT) for many cancers including those of the esophagus. In this review, we will discuss the utility of the most widely used molecular imaging technique, (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET). (18)F-FDG PET has a variety of potential applications ranging from improving staging accuracy at the time of initial diagnosis to assisting in radiation target volume delineation. Furthermore, (18)F-FDG PET can be used to evaluate treatment response after completion of neoadjuvant therapy or potentially during neoadjuvant therapy. Finally, we will also discuss other novel molecular imaging techniques that have potential to further improve cancer care.
Project description:In patients with suspected coronary artery disease (CAD), dynamic myocardial computed tomography perfusion (CTP) imaging combined with coronary CT angiography (CTA) has become a comprehensive diagnostic examination technique resulting in both anatomical and quantitative functional information on myocardial blood flow, and the presence and grading of stenosis. Recently, CTP imaging has been proven to have good diagnostic accuracy for detecting myocardial ischemia, comparable to stress magnetic resonance imaging and positron emission tomography perfusion, while being superior to single photon emission computed tomography. Dynamic CTP accompanied by coronary CTA can serve as a gatekeeper for invasive workup, as it reduces unnecessary diagnostic invasive coronary angiography. Dynamic CTP also has good prognostic value for the prediction of major adverse cardiovascular events. In this article, we will provide an overview of dynamic CTP, including the basics of coronary blood flow physiology, applications and technical aspects including protocols, image acquisition and reconstruction, future perspectives, and scientific challenges. KEY POINTS: • Stress dynamic myocardial CT perfusion combined with coronary CTA is a comprehensive diagnostic examination technique resulting in both anatomical and quantitative functional information. • Dynamic CTP imaging has good diagnostic accuracy for detecting myocardial ischemia comparable to stress MRI and PET perfusion. • Dynamic CTP accompanied by coronary CTA may serve as a gatekeeper for invasive workup and can guide treatment in obstructive coronary artery disease.
Project description:Atherosclerotic diseases account for nearly half of all deaths and are leading causes of adult disability. Our understanding of how atherosclerosis leads to cardiovascular disease events has evolved: from a concept of progressive luminal narrowing, to that of sudden rupture and thrombosis of biologically active atheroma. In concert with this conceptual shift, contemporary imaging techniques now allow imaging of biological processes that associate with plaque instability: active calcification and plaque inflammation. This review focuses on opportunities provided by positron emission tomography/computed tomography, to identify these high-risk biological features of atherosclerosis.
Project description:Acute coronary syndromes (ACS) secondary to coronary vessel plaques represent a major cause of cardiovascular morbidity and mortality worldwide. Advancements in imaging technology over the last 3 decades have continuously enabled the study of coronary plaques via invasive imaging methods like intravascular ultrasound (IVUS) and optical coherence tomography (OCT). The introduction of near-infrared spectroscopy (NIRS) as a modality that could detect the lipid (cholesterol) content of atherosclerotic plaques in the early nineties, opened the potential of studying "vulnerable" or rupture-prone, lipid-rich coronary plaques in ACS patients. Most recently, the ability of NIRS-IVUS to identify patients at risk of future adverse events was shown in a prospective multicenter trial, the Lipid-Rich-plaque Study. Intracoronary NIRS-IVUS imaging offers a unique method of coronary lipid-plaque characterization and could become a valuable clinical diagnostic and treatment monitoring tool.