Project description:Many different viruses are excreted by humans and animals and are frequently detected in fecal contaminated waters causing public health concerns. Classical bacterial indicator such as E. coli and enterococci could fail to predict the risk for waterborne pathogens such as viruses. Moreover, the presence and levels of bacterial indicators do not always correlate with the presence and concentration of viruses, especially when these indicators are present in low concentrations. Our research group has proposed new viral indicators and methodologies for determining the presence of fecal pollution in environmental samples as well as for tracing the origin of this fecal contamination (microbial source tracking). In this paper, we examine to what extent have these indicators been applied by the scientific community. Recently, quantitative assays for quantification of poultry and ovine viruses have also been described. Overall, quantification by qPCR of human adenoviruses and human polyomavirus JC, porcine adenoviruses, bovine polyomaviruses, chicken/turkey parvoviruses, and ovine polyomaviruses is suggested as a toolbox for the identification of human, porcine, bovine, poultry, and ovine fecal pollution in environmental samples.
Project description:The model prokaryote Escherichia coli can exist as a either a commensal or a pathogen in the gut of diverse mammalian hosts. These associations, coupled with its ease of cultivation and genetic variability, have made E. coli a popular indicator organism for tracking the origin of fecal water contamination. Source tracking accuracy is predicated on the assumption that E. coli isolates recovered from contaminated water present a genetic signature characteristic of the host from which they originated. In this study, we compared the accuracy with which E. coli isolated from humans, bear, cattle and deer could be identified by standard fingerprinting methods used for library-based microbial source tracking (repetitive element PCR and pulsed-field gel electrophoresis) in relation to microarray-based analysis of genome content. Our results show that patterns of gene presence or absence were more useful for distinguishing E. coli isolates from different sources than traditional fingerprinting methods, particularly in the case of human strains. Host-associated differences in genome composition included the presence or absence of mobile IS1 elements as well as genes encoding the ferric dicitrate iron transporter (fec), E. coli common pilus (ECP), type 1 fimbriae and the CRISPR associated cas proteins. Many of these differences occurred in regions of the E. coli chromosome previously shown to be “hot spots” for the integration of horizontally-acquired DNA. PCR primers designed to amplify the IS1 and fec loci confirmed array results and demonstrated the ease with which gene presence/absence data can be converted into a diagnostic assay. The data presented here suggest that, despite the high level of genetic diversity observed among isolates by PFGE, human-derived strains may constitute a distinct ecotype distinguished by multiple potential library-independent source tracking markers.
Project description:The model prokaryote Escherichia coli can exist as a either a commensal or a pathogen in the gut of diverse mammalian hosts. These associations, coupled with its ease of cultivation and genetic variability, have made E. coli a popular indicator organism for tracking the origin of fecal water contamination. Source tracking accuracy is predicated on the assumption that E. coli isolates recovered from contaminated water present a genetic signature characteristic of the host from which they originated. In this study, we compared the accuracy with which E. coli isolated from humans, bear, cattle and deer could be identified by standard fingerprinting methods used for library-based microbial source tracking (repetitive element PCR and pulsed-field gel electrophoresis) in relation to microarray-based analysis of genome content. Our results show that patterns of gene presence or absence were more useful for distinguishing E. coli isolates from different sources than traditional fingerprinting methods, particularly in the case of human strains. Host-associated differences in genome composition included the presence or absence of mobile IS1 elements as well as genes encoding the ferric dicitrate iron transporter (fec), E. coli common pilus (ECP), type 1 fimbriae and the CRISPR associated cas proteins. Many of these differences occurred in regions of the E. coli chromosome previously shown to be M-bM-^@M-^\hot spotsM-bM-^@M-^] for the integration of horizontally-acquired DNA. PCR primers designed to amplify the IS1 and fec loci confirmed array results and demonstrated the ease with which gene presence/absence data can be converted into a diagnostic assay. The data presented here suggest that, despite the high level of genetic diversity observed among isolates by PFGE, human-derived strains may constitute a distinct ecotype distinguished by multiple potential library-independent source tracking markers. Twelve isolates of E. coli ( 3 from bear, 3 from cattle, 3 from deer and 3 from humans) were isolated from feces and/or raw sewage. Genome content for each strain was assessed in duplicate using comparative genome hybridization with E. coli K12 MG1655 as the reference for a total of 24 arrays.
Project description:BackgroundPigs are well known source of human infectious disease. To better understand the spectrum of viruses present in pigs, we utilized the 454 Life Sciences GS-FLX high-throughput sequencing platform to sequence stool samples from healthy pigs.FindingsTotal nucleic acid was extracted from stool samples of healthy piglets and randomly amplified. The amplified materials were pooled and processed using a high-throughput pyrosequencing technique. The raw sequences were deconvoluted on the basis of the barcode and then processed through a standardized bioinformatics pipeline. The unique reads (348, 70 and 13) had limited similarity to known astroviruses, bocaviruses and parechoviruses. Specific primers were synthesized to assess the prevalence of the viruses in healthy piglets. Our results indicate extremely high rates of positivity.ConclusionsSeveral novel astroviruses, bocaviruses and Ljungan-like viruses were identified in stool samples from healthy pigs. The rates of isolation for the new viruses were high. The high detection rate, diverse sequences and categories indicate that pigs are well-established reservoirs for and likely sources of different enteric viruses.
Project description:We investigated the effect of rainfall on the levels and sources of microbial contamination in the Han River, Korea. Thirty-four samples were collected at two sampling sites located upstream and downstream in the river from July 2010 to February 2011. Various fecal indicator microorganisms, including total coliform, fecal coliform, Escherichia coli, Enterococcus spp., somatic and male-specific (F+) coliphage, and four major enteric viruses were analyzed. Rainfall was positively correlated with the levels of fecal coliform and norovirus at both sampling sites. Additionally, rainfall was positively correlated with the levels of total coliform, E. coli, Enterococcus spp., and F+ coliphage at the upstream site. To identify the source of fecal contamination, microbial source tracking (MST) was conducted using both male-specific (F+) RNA coliphage and the Enterococcus faecium esp gene as previously described. Our results clearly indicated that the majority of fecal contamination at the downstream Han River site was from a human source. At the upstream sampling site, contamination from human fecal matter was very limited; however, fecal contamination from non-point animal sources increased following rainfall. In conclusion, our data suggest that rainfall significantly affects the level and source of fecal contamination in the Han River, Korea.
Project description:Squash mosaic virus (SqMV) is a phytovirus that infects great diversity of plants worldwide. In Brazil, the SqMV has been identified in the states of Ceará, Maranhão, Piauí, Rio Grande do Norte, and Tocantins. The presence of non-pathogenic viruses in animals, such as phytoviruses, may not be completely risk-free. Similarities in gene repertories between these viruses and viruses that affect animal species have been reported. The present study describes the fully sequenced genomes of SqMV found in human feces, collected in Tocantins, and analyzes the viral profile by metagenomics in the context of diarrhea symptomatology. The complete SqMV genome was obtained in 39 of 253 analyzed samples (15.5%); 97.4% of them belonged to children under 5 years old. There was no evidence that the observed symptoms were related to the presence of SqMV. Of the different virus species detected in these fecal samples, at least 4 (rotavirus, sapovirus, norovirus, parechovirus) are widely known to cause gastrointestinal symptoms. The presence of SqMV nucleic acid in fecal samples is likely due to recent dietary consumption and it is not evidence of viral replication in the human intestinal cells. Identifying the presence of SqMV in human feces and characterization of its genome is a relevant precursor to determining whether and how plant viruses interact with host cells or microorganisms in the human gastrointestinal tract.
Project description:Mosaic tetracycline resistance genes comprising tet(O), tet(W), and tet(32) sequences were abundant in DNA extracted from pig and human fecal samples, accounting for 78% (50/64) and 46% (37/80) of genes amplified with a tet(O) primer set, respectively, in two samples. The nonmosaic tet(32) gene was isolated from a human saliva bacterium.
Project description:BackgroundAmong all known picornaviruses, only two species, equine rhinitis A virus and equine rhinitis B virus (ERBV) are known to infect horses, causing respiratory infections. No reports have described the detection of ERBV in fecal samples of horses and no complete genome sequences of ERBV3 are available.MethodsWe performed a molecular epidemiology study to detect ERBVs in horses from Dubai and Hong Kong. Complete genome sequencing of the ERBVs as well as viral loads and genome, phylogenetic and evolutionary analysis were performed on the positive samples.ResultsERBV was detected in four (13.8 %) of the 29 fecal samples in horses from Dubai, with viral loads 8.28 × 10(3) to 5.83 × 10(4) copies per ml, but none of the 47 fecal samples in horses from Hong Kong by RT-PCR. Complete genome sequencing and phylogenetic analysis showed that three of the four strains were ERBV3 and one was ERBV2. The major difference between the genomes of ERBV3 and those of ERBV1 and ERBV2 lied in the amino acid sequences of their VP1 proteins. The Ka/Ks ratios of all the coding regions in the ERBV3 genomes were all <0.1, suggesting that ERBV3 were stably evolving in horses. Using the uncorrelated lognormal distributed relaxed clock model on VP1 gene, the date of the most recent common ancestor (MRCA) of ERBV3 was estimated to be 1785 (HPDs, 1176 to 1937) and the MRCA dates of ERBV1 and ERBV2 were estimated to be 1848 (HPDs, 1466 to 1949) respectively.ConclusionsBoth acid stable (ERBV3) and acid labile (ERBV2) ERBVs could be found in fecal samples of horses. Detection of ERBVs in fecal samples would have implications for their transmission and potential role in gastrointestinal diseases as well as fecal sampling as an alternative method of identifying infected horses.
Project description:Increasing data indicate that bats harbor diverse viruses, some of which cause severe human diseases. In this study, sequence-independent amplification and high-throughput sequencing (Solexa) were applied to the metagenomic analysis of viruses in bat fecal samples collected from 6 locations in China. A total of 8,746,417 reads with a length of 306,124,595 bp were obtained. Among these reads, 13,541 (0.15%) had similarity to phage sequences and 9,170 (0.1%) had similarity to eukaryotic virus sequences. A total of 129 assembled contigs (>100 nucleotides) were constructed and compared with GenBank: 32 contigs were related to phages, and 97 were related to eukaryotic viruses. The most frequent reads and contigs related to eukaryotic viruses were homologous to densoviruses, dicistroviruses, coronaviruses, parvoviruses, and tobamoviruses, a range that includes viruses from invertebrates, vertebrates, and plants. Most of the contigs had low identities to known viral genomic or protein sequences, suggesting that a large number of novel and genetically diverse insect viruses as well as putative mammalian viruses are transmitted by bats in China. This study provides the first preliminary understanding of the virome of some bat populations in China, which may guide the discovery and isolation of novel viruses in the future.