Ontology highlight
ABSTRACT: Motivation
Several state-of-the-art methods for isoform identification and quantification are based on [Formula: see text]-regularized regression, such as the Lasso. However, explicitly listing the-possibly exponentially-large set of candidate transcripts is intractable for genes with many exons. For this reason, existing approaches using the [Formula: see text]-penalty are either restricted to genes with few exons or only run the regression algorithm on a small set of preselected isoforms.Results
We introduce a new technique called FlipFlop, which can efficiently tackle the sparse estimation problem on the full set of candidate isoforms by using network flow optimization. Our technique removes the need of a preselection step, leading to better isoform identification while keeping a low computational cost. Experiments with synthetic and real RNA-Seq data confirm that our approach is more accurate than alternative methods and one of the fastest available.Availability and implementation
Source code is freely available as an R package from the Bioconductor Web site (http://www.bioconductor.org/), and more information is available at http://cbio.ensmp.fr/flipflop.Supplementary information
Supplementary data are available at Bioinformatics online.
SUBMITTER: Bernard E
PROVIDER: S-EPMC4147886 | biostudies-literature | 2014 Sep
REPOSITORIES: biostudies-literature
Bernard Elsa E Jacob Laurent L Mairal Julien J Vert Jean-Philippe JP
Bioinformatics (Oxford, England) 20140509 17
<h4>Motivation</h4>Several state-of-the-art methods for isoform identification and quantification are based on [Formula: see text]-regularized regression, such as the Lasso. However, explicitly listing the-possibly exponentially-large set of candidate transcripts is intractable for genes with many exons. For this reason, existing approaches using the [Formula: see text]-penalty are either restricted to genes with few exons or only run the regression algorithm on a small set of preselected isofor ...[more]