Molecular features and survival outcomes of the intrinsic subtypes within HER2-positive breast cancer.
Ontology highlight
ABSTRACT: The clinical impact of the biological heterogeneity within HER2-positive (HER2+) breast cancer is not fully understood. Here, we evaluated the molecular features and survival outcomes of the intrinsic subtypes within HER2+ breast cancer. We interrogated The Cancer Genome Atlas (n = 495) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) datasets (n = 1730) of primary breast cancers for molecular data derived from DNA, RNA and protein, and determined intrinsic subtype. Clinical HER2 status was defined according to American Society of Clinical Oncology (ASCO)/College of American Pathologists (CAP) guidelines or DNA copy-number aberration by single nucleotide polymorphism arrays. Cox models tested the prognostic significance of each variable in patients not treated with trastuzumab (n = 1711). Compared with clinically HER2 (cHER2)-negative breast cancer, cHER2+ breast cancer had a higher frequency of the HER2-enriched (HER2E) subtype (47.0% vs 7.1%) and a lower frequency of Luminal A (10.7% vs 39.0%) and Basal-like (14.1% vs 23.4%) subtypes. The likelihood of cHER2-positivity in HER2E, Luminal B, Basal-like and Luminal A subtypes was 64.6%, 20.0%, 14.4% and 7.3%, respectively. Within each subtype, only 0.3% to 3.9% of genes were found differentially expressed between cHER2+ and cHER2-negative tumors. Within cHER2+ tumors, HER2 gene and protein expression was statistically significantly higher in the HER2E and Basal-like subtypes than either luminal subtype. Neither cHER2 status nor the new 10-subtype copy number-based classification system (IntClust) added independent prognostic value to intrinsic subtype. When the intrinsic subtypes are taken into account, cHER2-positivity does not translate into large changes in the expression of downstream signaling pathways, nor does it affect patient survival in the absence of HER2 targeting.
Project description:PurposeThe vast majority of research studies that have described the links between DNA damage repair or homologous recombination deficiency (HRD) score, and tumor biology, have concerned either triple negative breast cancers or cancers with mutation of BRCA 1/2. We hypothesized that ER + /HER2- early breast tumors without BRCA 1/2 mutation could have high HRD score and aimed to describe their genomic, transcriptomic, and immune landscapes.Patients and methodsIn this study, we reported BRCA 1/2 mutational status, HRD score, and mutational signature 3 (S3) expression, in all early breast cancer (eBC) subtypes from the TCGA database, with a particular focus in ER + /HER2-. In this subtype, bioinformatics analyses of tumor transcriptomic, immune profile, and mutational landscape were performed, according to HRD status. Overall survival (OS), progression free-interval (PFI), and variables associated with outcome were also evaluated.ResultsAmong the 928 tumor samples analyzed, 46 harbored BRCA 1/2 mutations, and 606 were ER + /HER2- (of which 24 were BRCA 1/2 mutated). We found a subset of BRCA-proficient ER + /HER2- eBC, with high HRD score. These tumors displayed significantly different immune, mutational, and tumor molecular signatures landscapes, compared to BRCA-mutated and BRCA-proficient HRD-low tumors. Outcome did not significantly differ between these 3 groups, but biological factors associated with survival are not the same across the 3 entities.ConclusionThis study highlights possible novel biological differences among ER + /HER2- breast cancer related to HRD status. Our results could have important implications for translational research and/or the design of future clinical trials, but require prospective clinical evaluation.
Project description:BackgroundThe introduction of pertuzumab has greatly improved pathological complete response (pCR) rates in HER2-positive breast cancer, yet effects on long-term survival have been limited and it is uncertain which patients derive most benefit. In this study, we determine the prognostic value of BluePrint subtyping in HER2-positive breast cancer. Additionally, we evaluate its use as a biomarker for predicting response to trastuzumab-containing neoadjuvant chemotherapy with or without pertuzumab.MethodsFrom a cohort of patients with stage II-III HER2-positive breast cancer who were treated with neoadjuvant chemotherapy and trastuzumab with or without pertuzumab, 836 patients were selected for microarray gene expression analysis, followed by readout of BluePrint standard (HER2, Basal and Luminal) and dual subtypes (HER2-single, Basal-single, Luminal-single, HER2-Basal, Luminal-HER2, Luminal-HER2-Basal). The associations between subtypes and pathological complete response (pCR), overall survival (OS) and breast cancer-specific survival (BCSS) were assessed, and pertuzumab benefit was evaluated within the BluePrint subgroups.ResultsBluePrint results were available for 719 patients. In patients with HER2-type tumors, the pCR rate was 71.9% in patients who received pertuzumab versus 43.5% in patients who did not (adjusted Odds Ratio 3.43, 95% CI 2.36-4.96). Additionally, a significantly decreased hazard was observed for both OS (adjusted hazard ratio [aHR] 0.45, 95% CI 0.25-0.80) and BCSS (aHR 0.46, 95% CI 0.24-0.86) with pertuzumab treatment. Findings were similar in the HER2-single subgroup. No significant benefit of pertuzumab was seen in other subtypes.ConclusionsIn patients with HER2-type or HER2-single-type tumors, pertuzumab significantly improved the pCR rate and decreased the risk of breast cancer mortality, which was not observed in other subtypes. BluePrint subtyping may be valuable in future studies to identify patients that are likely to be highly sensitive to HER2-targeting agents.
Project description:PurposeDifferences in tumor biology, genomic architecture, and health care delivery patterns contribute to the breast cancer mortality gap between White and Black patients in the US. Although this gap has been well documented in previous literature, it remains uncertain how large the actual effect size of race is for different survival outcomes and the four breast cancer subtypes.MethodsWe established a breast cancer patient cohort at the University of Chicago Comprehensive Cancer Center. We chose five major survival outcomes to study: overall survival, recurrence-free survival, breast-cancer-specific survival, time-to-recurrence and post-recurrence survival. Cox proportional hazards models were used to estimate the hazard ratios between Black and White patients, adjusting for selected patient, tumor, and treatment characteristics, and also stratified by the four breast cancer subtypes.ResultsThe study included 2795 stage I-III breast cancer patients (54% White and 38% Black). After adjusting for selected patient, tumor and treatment characteristics, Black patients still did worse than White patients in all five survival outcomes. The racial difference was highest within the HR-/HER2+ subgroup, in both overall survival (hazard ratio = 4.00, 95% CI 1.47-10.86) and recurrence-free survival (hazard ratio = 3.00, 95% CI 1.36-6.60), adjusting for age at diagnosis, cancer stage, and comorbidities. There was also a significant racial disparity within the HR+/HER2- group in both overall survival and recurrence-free survival.ConclusionsOur study confirmed that racial disparity existed between White and Black breast cancer patients in terms of both survival and recurrence, and found that this disparity was largest among HR-/HER2+ and HR+/HER2- patients.
Project description:Intratumoral human epidermal growth factor receptor 2 (HER2) heterogeneity has been reported in 16?36% of HER2-positive breast cancer and its clinical impact is under discussion. We examined the biological effects of HER2-heterogeneity on mouse models and analyzed metastatic brains by RNA sequence analysis. A metastatic mouse model was developed using 231-Luc (triple negative cells) and 2 HER2-positive cell lines, namely, HER2-60 and HER2-90 which showed heterogeneous and monotonous HER2 expressions, respectively. Metastatic lesions developed in 3 weeks in all the mice injected with HER2-60 cells, and in 69% of the mice injected with HER2-90 and 87.5% of the mice injected with 231-Luc. The median survival days of mice injected with 231-Luc, HER2-60, and HER2-90 cells were 29 (n = 24), 24 (n = 22) and 30 (n = 13) days, respectively. RNA sequence analysis showed that CASP-1 and its related genes were significantly downregulated in metastatic brain tumors with HER2-60 cells. The low expression of caspase-1 could be a new prognostic biomarker for early relapse in HER2-positive breast cancer.
Project description:BackgroundFeatures in preoperative ultrasound could predict the prognosis of triple-negative breast cancer (TNBC), while its prognostic value in other molecular subtypes of breast cancer (BC) was unknown. The study aimed to assess the prognostic value of preoperative sonographic features, including orientations, on long-term outcomes in BC and its association with different molecular subtypes.MethodsWomen diagnosed with invasive BC > 5 mm who underwent surgery were retrospectively reviewed. Clinical, pathological, and sonographic profiles were collected and recurrence-free survival (RFS) and breast cancer-specific survival (BCSS) were reported. Interactions between clinicopathological features and tumor orientations in predicting RFS and BCSS were analyzed. Competing risk model was performed to estimate prognostic values of sonographic features for RFS and BCSS.ResultsA total of 2812 patients were included. With a median follow-up of 60.0 months, 268 (9.5%) patients suffered from recurrences and 104 (3.7%) died of BC. The prognostic values of vertical orientation in predicting RFS (P = .001) and BCSS (P = .001) were strongly associated with molecular subtypes. Non-TNBC tumors with vertical orientation had less recurrence events compared with parallel orientation (6.3% vs 8.7%, P = .035), whereas failed to predict disease outcomes in multivariate analysis (P > .05). Oppositely, in TNBC, vertical orientation was associated with worse RFS (HR = 3.50; 95% confidence interval [CI] 1.69-7.24; P < .001) and BCSS (HR = 6.36; 95% CI 2.86-14.14; P < .001) in multivariate analysis with a 5-year RFS and BCSS of 73.4% and 74.6%. Meanwhile, vertical orientation was related with smaller tumor size (P < .001), human epidermal growth factor receptor 2 nonamplification (P < .001), and lower Ki-67 expression (P = .001) among non-TNBC population, whereas TNBC tumors with vertical orientation had a higher burden of axillary lymph node metastases (2.8 ± 1.0 vs 1.4 ± 0.2, P = .001).ConclusionsPrognostic values of sonographic orientation in predicting BC disease outcomes were associated with molecular subtypes. Vertical orientation in preoperative sonogram may serve as a prognostic biomarker for TNBC patients.
Project description:The phosphoinositide 3-kinase (PI3K) pathway plays a key role in cancer, influencing growth, proliferation, and survival of tumor cells. PIK3CA mutations are generally oncogenic and responsible for uncontrolled cellular growth. PI3K inhibitors (PI3Ki) can inhibit the PI3K/AKT/mTOR pathway, although burdened by not easily manageable toxicity. Among PI3Ki, alpelisib, a selective p110α inhibitor, is approved for the treatment of hormone receptor (HR)+/HER2- PIK3CA mutant metastatic breast cancer (BC) that has progressed to a first line endocrine therapy. PIK3CA mutations are also present in triple negative BC (TNBC) and HER2+ BC, although the role of PI3K inhibition is not well established in these subtypes. In this review, we go through the PI3K/AKT/mTOR pathway, describing most common mutations found in PI3K genes and how they can be detected. We describe the available biological and clinical evidence of PIK3CA mutations in breast cancers other than HR+/HER2-, summarizing clinical trials investigating PI3Ki in these subtypes.
Project description:BackgroundBasal-like constitutes an important molecular subtype of breast cancer characterised by an aggressive behaviour and a limited therapy response. The outcome of patients within this subtype is, however, divergent. Some individuals show an increased risk of dying in the first five years, and others a long-term survival of over ten years after the diagnosis. In this study, we aim at identifying markers associated with basal-like patients' survival and characterising subgroups with distinct disease outcome.MethodsWe explored the genomic and transcriptomic profiles of 351 basal-like samples from the METABRIC and ROCK data sets. Two selection methods, labelled Differential and Survival filters, were employed to determine genes/probes that are differentially expressed in tumour and control samples, and are associated with overall survival. These probes were further used to define molecular subgroups, which vary at the microRNA level and in DNA copy number.ResultsWe identified the expression signature of 80 probes that distinguishes between two basal-like subgroups with distinct clinical features and survival outcomes. Genes included in this list have been mainly linked to cancer immune response, epithelial-mesenchymal transition and cell cycle. In particular, high levels of CXCR6, HCST, C3AR1 and FPR3 were found in Basal I; whereas HJURP, RRP12 and DNMT3B appeared over-expressed in Basal II. These genes exhibited the highest betweenness centrality and node degree values and play a key role in the basal-like breast cancer differentiation. Further molecular analysis revealed 17 miRNAs correlated to the subgroups, including hsa-miR-342-5p, -150, -155, -200c and -17. Additionally, increased percentages of gains/amplifications were detected on chromosomes 1q, 3q, 8q, 10p and 17q, and losses/deletions on 4q, 5q, 8p and X, associated with reduced survival.ConclusionsThe proposed signature supports the existence of at least two subgroups of basal-like breast cancers with distinct disease outcome. The identification of patients at a low risk may impact the clinical decisions-making by reducing the prescription of high-dose chemotherapy and, consequently, avoiding adverse effects. The recognition of other aggressive features within this subtype may be also critical for improving individual care and for delineating more effective therapies for patients at high risk.
Project description:BackgroundCDK4/6 inhibitors (CDKi), namely, palbociclib, ribociclib, and abemaciclib, combined with either an aromatase inhibitor (AI) or fulvestrant are the standard first/second line for hormone receptor-positive(HR+)/HER2-negative(neg) metastatic breast cancer (MBC). However, the choice of one specific CDKi is arbitrary and based on the physician's experience with the drug, toxicity profile, and patient's preferences, whereas biomarkers for optimal patient selection have not been established so far. Moreover, upfront chemotherapy is still recommended in case of clinical presentation with visceral crisis, despite no evidence of superior benefit for chemotherapy regimens against CDKi-based regimens. Recent correlative biomarker analyses from pivotal trials of palbociclib and ribociclib showed that HR+/HER2-neg MBC might respond differently according to the molecular intrinsic subtype, with Luminal A and B tumors being sensitive to both CDKi, Basal-like being insensitive to endocrine therapy, irrespective of CDKi, and HER2-enriched tumors showing a benefit only with ribociclib-based therapy.Clinical caseWe hereby present a paradigmatic clinical case of a woman affected by a relapsed HR+/HER2-neg MBC with bone and nodal lesions, presenting with a visceral crisis in the form of lymphangitis carcinomatosis and diagnosed with a molecularly HER2-enriched tumor, successfully treated with upfront ribociclib + fulvestrant. The patient experienced a complete symptomatic and radiologic remission of the lymphangitis with a partial response as best response, according to RECIST 1.1 criteria. The progression-free survival (PFS) was of 20 months, in line with the median PFS observed in the ribociclib + fulvestrant pivotal trial, where, however, patients with visceral crisis had been excluded.ConclusionsThis clinical case confirms in the real-world setting that non-luminal subtypes can be found in HR+/HER2-neg disease and may have potential therapeutic implications in the metastatic setting. It also questions the recommendation of upfront chemotherapy in the case of a visceral crisis in the era of CDKi-based regimens. These issues merit further evaluation in prospective and larger studies.
Project description:BackgroundDifferent estrogen receptor (ER) and progesterone receptor (PR) expression patterns have important biological and therapeutic implications in patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer. However, little is known about hormone receptor (HR)-positive and triple-positive subtypes, making therapy selection and survival prognosis difficult. This study investigated the clinical characteristics and nomogram-predicted survival of patients with HER2-positive breast cancer.Materials and methodsData on patients with HER2-positive breast cancer were retrieved from the Surveillance, Epidemiology, and End Results database. Comparisons were carried out between single HR-positive and double HR-positive/double HR-negative subtypes. A nomogram-based model of predicted outcomes was developed.ResultsThis cohort study included 34 819 patients with breast cancer (34 606 women and 213 men). Single HR-positive and double HR-positive/double HR-negative subtypes showed distinct clinicopathological characteristics. Multivariable Cox regression analysis showed that patients with ER-positive/PR-negative/HER2-positive [hazard ratio (HR) = 1.24; 95% confidence interval (CI): 1.14-1.39], ER-negative/PR-positive/HER2-positive (HR = 1.56; 95% CI: 1.23-1.97), and ER-negative/PR-negative/HER2-positive (HR = 1.56; 95% CI: 1.43-1.70) subtypes had worse breast cancer-specific survival than patients with the triple-positive subtype. Thirteen clinical parameters were included as prognostic factors in the nomogram: age, sex, race, grade, histology type, bone, brain, liver, and lung metastasis, TNM (tumor-node-metastasis) staging, and molecular subtype. The C-index was 0.853 (95% CI: 0.845-0.861). Calibration plots indicated that the nomogram-predicted survival was consistent with the recorded 3-year and 5-year prognoses.ConclusionsSignificant differences in survival rates were observed between single HR-positive and double HR-positive/double HR-negative subtypes. A nomogram accurately predicted survival. Different treatment strategies may be required for HER2-positive patients with single HR-positive and double HR-positive tumors to ensure optimal treatment and benefits.
Project description:Trastuzumab is effective in the treatment of HER2/neu over-expressing breast cancer, but not all patients benefit from it. In vitro data suggest a role for HER3 in the initiation of signaling activity involving the AKT–mTOR pathway leading to trastuzumab insensitivity. We sought to investigate the potential of HER3 alone and in the context of p95HER2 (p95), a trastuzumab resistance marker, as biomarkers of trastuzumab escape. Using the VeraTag® assay platform, we developed a dual antibody proximity-based assay for the precise quantitation of HER3 total protein (H3T) from formalin-fixed paraffin-embedded (FFPE) breast tumors. We then measured H3T in 89 patients with metastatic breast cancer treated with trastuzumab-based therapy, and correlated the results with progression-free survival and overall survival using Kaplan–Meier and decision tree analyses that also included HER2 total (H2T) and p95 expression levels. Within the sub-population of patients that over-expressed HER2, high levels of HER3 and/or p95 protein expression were significantly associated with poor clinical outcomes on trastuzumab-based therapy. Based on quantitative H3T, p95, and H2T measurements, multiple subtypes of HER2-positive breast cancer were identified that differ in their outcome following trastuzumab therapy. These data suggest that HER3 and p95 are informative biomarkers of clinical outcomes on trastuzumab therapy, and that multiple subtypes of HER2-positive breast cancer may be defined by quantitative measurements of H3T, p95, and H2T.