Immobilization of xylanase purified from Bacillus pumilus VLK-1 and its application in enrichment of orange and grape juices.
Ontology highlight
ABSTRACT: This study was conducted to evaluate the efficacy of purified free and immobilized xylanase in enrichment of fruit juices. Extracellular xylanase produced from Bacillus pumilus VLK-1 was purified to apparent homogeneity by 15.4-fold with 88.3 % recovery in a single step using CM-Sephadex C-50. Purified xylanase showed a single band on SDS-polyacrylamide gel with a molecular mass of 22.0 kDa. The purified enzyme was immobilized on glutaraldehyde-activated aluminum oxide pellets and the immobilization process parameters were optimized statistically through response surface methodology. The bound enzyme displayed an increase in optimum temperature from 60 to 65?ºC and pH from 8.0 to 9.0. The pH and temperature stability of the enzyme was also enhanced after immobilization. It could be reused for 10 consecutive cycles with 58 % residual enzyme activity. The potential of purified xylanase (free and immobilized) in juice enrichment from grape (Vitis amurensis) and orange (Citrus sinensis) pulps has been investigated. The optimization of this process using free xylanase revealed maximum juice yield, clarity and reducing sugar on treatment with 20 IU/g fruit pulp for 30 min at 50?ºC. Treatment of both the fruit pulps with xylanase under optimized conditions resulted in an increase in juice yield, clarity, reducing sugars, titratable acidity, and filterability but a decline in turbidity and viscosity. Immobilized enzyme was more effective in improving juice quality as compared to its soluble counterpart. The results showed B. pumilus VLK-1 xylanase, in both free and immobilized form, as a potential candidate for use in fruit juice enrichment.
SUBMITTER: Kumar L
PROVIDER: S-EPMC4152508 | biostudies-literature | 2014 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA