Unknown

Dataset Information

0

Orthosiphon stamineus protects Caenorhabditis elegans against Staphylococcus aureus infection through immunomodulation.


ABSTRACT: Amidst growing concerns over the spread of antibiotic-resistant Staphylococcus aureus strains, the identification of alternative therapeutic molecules has become paramount. Previously, we utilized a Caenorhabditis elegans-S. aureus screening platform to identify potential anti-infective agents from a collection of natural extracts and synthetic compounds. One of the hits obtained from the screen was the aqueous extract of Orthosiphon stamineus leaves (UE-12) that enhanced the survival of infected nematodes without interfering with bacterial growth. In this study, we used a fluorescent transgenic reporter strain and observed that the repressed expression of the lys-7 defense gene in infected nematodes was restored in the presence of UE-12. Analysis of a selected panel of PMK-1 and DAF-16-regulated transcripts and loss-of-function mutants in these pathways indicates that the protective role of UE-12 is mediated via the p38 MAP kinase and insulin-like signaling pathways. Further analysis of a panel of known bioactive compounds of UE-12 proposed eupatorin (C18H16O7) as the possible candidate active molecule contributing to the anti-infective property of UE-12. Taken together, these findings strongly suggest that the O. stamineus leaf extract is a promising anti-infective agent that confers an advantage in survival against S. aureus infection by modulating the immune response of the infected host.

SUBMITTER: Kong C 

PROVIDER: S-EPMC4154301 | biostudies-literature | 2014 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Orthosiphon stamineus protects Caenorhabditis elegans against Staphylococcus aureus infection through immunomodulation.

Kong Cin C   Tan Man-Wah MW   Nathan Sheila S  

Biology open 20140627 7


Amidst growing concerns over the spread of antibiotic-resistant Staphylococcus aureus strains, the identification of alternative therapeutic molecules has become paramount. Previously, we utilized a Caenorhabditis elegans-S. aureus screening platform to identify potential anti-infective agents from a collection of natural extracts and synthetic compounds. One of the hits obtained from the screen was the aqueous extract of Orthosiphon stamineus leaves (UE-12) that enhanced the survival of infecte  ...[more]

Similar Datasets

| S-EPMC3893568 | biostudies-literature
| S-EPMC2834640 | biostudies-literature
2010-06-12 | GSE21819 | GEO
| S-EPMC9081618 | biostudies-literature
| S-EPMC7400404 | biostudies-literature
| S-EPMC5522847 | biostudies-other
| S-EPMC5460262 | biostudies-literature
| S-EPMC1853117 | biostudies-literature
| S-EPMC6950563 | biostudies-literature
| S-EPMC3228750 | biostudies-literature