Ontology highlight
ABSTRACT: Background
Pigs are an optimal animal for conducting biomedical research because of their anatomical and physiological resemblance to humans. In contrast to the abundant resources available in the study of mice, few fluorescent protein-harboring porcine models are available for preclinical studies. In this paper, we report the successful generation and characterization of a transgenic DsRed-Monomer porcine model.Methods
The transgene comprised a CMV enhancer/chicken-beta actin promoter and DsRed monomeric cDNA. Transgenic pigs were produced by using pronuclear microinjection. PCR and Southern blot analyses were applied for identification of the transgene. Histology, blood examinations and computed tomography were performed to study the health conditions. The pig amniotic fluid progenitor/stem cells were also isolated to examine the existence of red fluorescence and differentiation ability.Results
Transgenic pigs were successfully generated and transmitted to offspring at a germ-line transmission rate of 43.59% (17/39). Ubiquitous expression of red fluorescence was detected in the brain, eye, tongue, heart, lung, liver, pancreas, spleen, stomach, small intestine, large intestine, kidney, testis, and muscle; this was confirmed by histology and western blot analyses. In addition, we confirmed the differentiation potential of amniotic fluid progenitor stem cells isolated from the transgenic pig.Conclusions
This red fluorescent pig can serve as a host for other fluorescent-labeled cells in order to study cell-microenvironment interactions, and can provide optimal red-fluorescent-labeled cells and tissues for research in developmental biology, regenerative medicine, and xenotransplantation.
SUBMITTER: Chou CJ
PROVIDER: S-EPMC4154781 | biostudies-literature | 2014
REPOSITORIES: biostudies-literature
Chou Chih-Jen CJ Peng Shao-Yu SY Wu Mei-Han MH Yang Cho-Chen CC Lin Yu-Sheng YS Cheng Winston Teng-Kui WT Wu Shinn-Chih SC Lin Yao-Ping YP
PloS one 20140904 9
<h4>Background</h4>Pigs are an optimal animal for conducting biomedical research because of their anatomical and physiological resemblance to humans. In contrast to the abundant resources available in the study of mice, few fluorescent protein-harboring porcine models are available for preclinical studies. In this paper, we report the successful generation and characterization of a transgenic DsRed-Monomer porcine model.<h4>Methods</h4>The transgene comprised a CMV enhancer/chicken-beta actin pr ...[more]