Project description:Revertant mosaicism is an infrequently observed phenomenon caused by spontaneous correction of a pathogenic allele. We have observed such reversions caused by mitotic recombination of mutant TERC (telomerase RNA component) alleles in six patients from four families affected by dyskeratosis congenita (DC). DC is a multisystem disorder characterized by mucocutaneous abnormalities, dystrophic nails, bone-marrow failure, lung fibrosis, liver cirrhosis, and cancer. We identified a 4 nt deletion in TERC in a family with an autosomal-dominant form of DC. In two affected brothers without bone-marrow failure, sequence analysis revealed pronounced overrepresentation of the wild-type allele in blood cells, whereas no such skewing was observed in the other tissues tested. These observations suggest that this mosaic pattern might have resulted from somatic reversion of the mutated allele to the normal allele in blood-forming cells. SNP-microarray analysis on blood DNA from the two brothers indeed showed independent events of acquired segmental isodisomy of chromosome 3q, including TERC, indicating that the reversions must have resulted from mitotic recombination events. Subsequently, after developing a highly sensitive method of detecting mosaic homozygosity, we have found four additional cases with a mosaic-reversion pattern in blood cells; these four cases are part of a cohort of 17 individuals with germline TERC mutations. This shows that revertant mosaicism is a recurrent event in DC. This finding has important implications for improving diagnostic testing and understanding the variable phenotype of DC.
Project description:BackgroundTelomere length <1st percentile-for-age in leukocyte subsets by flow cytometry with fluorescence in situ hybridization (flow FISH) is highly sensitive and specific in diagnosing patients with dyskeratosis congenita (DC), a telomere biology disorder.MethodsWe evaluated the clinical utility of the high-throughput quantitative real-time PCR (qPCR) relative telomere length (RTL) measurement as a diagnostic test for DC in patients with a priori clinical and/or genetic DC diagnoses. We calculated the sensitivity and specificity of RTL at different age-specific percentile cutoffs in 31 patients with DC and 51 mutation-negative relatives, and evaluated RTL difference by disease genotype.ResultsqPCR RTL <1st percentile-for-age failed to identify more than 60% of the patients already known to have DC (sensitivity = 39%, specificity = 98%). Three-quarters of DC patients had RTL below the 10th percentile-for-age (sensitivity = 74%), as did 12% of the unaffected relatives (specificity = 88%).ConclusionsOur findings suggest that the qPCR RTL method is not optimal for diagnosing DC. In light of these limitations, leukocyte flow FISH telomere length remains the recommended molecular test for diagnosing DC.
Project description:Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome characterized clinically by the triad of abnormal nails, reticular skin pigmentation, and oral leukoplakia, and is associated with high risk of developing aplastic anemia, myelodysplastic syndrome, leukemia, and solid tumors. Patients have very short germline telomeres, and approximately half have mutations in one of six genes encoding proteins that maintain telomere function. Accurate diagnosis of DC is critical to ensure proper clinical management, because patients who have DC and bone marrow failure do not respond to immunosuppressive therapy and may have increased morbidity and mortality associated with hematopoietic stem cell transplantation.
Project description:Dyskeratosis congenita (DC) is a rare inherited bone marrow failure syndrome. The spectrum of cancer susceptibility in this disorder of telomere biology has not been described. There were more than 500 cases of DC reported in the literature from 1910 to 2008; the National Cancer Institute (NCI) prospective DC cohort enrolled 50 cases from 2002 to 2007. Sixty cancers were reported in 52 literature cases, while 7 occurred among patients in the NCI DC cohort. The 2 cohorts were comparable in their median overall survival (42 years) and cumulative incidence of cancer (40%-50% by age 50 years). The most frequent solid tumors were head and neck squamous cell carcinomas (40% of patients in either cohort), followed by skin and anorectal cancer. The ratio of observed to expected cancers (O/E ratio) in the NCI cohort was 11-fold compared with the general population (P < .05). Significantly elevated O/E ratios were 1154 for tongue cancer and 195 for acute myeloid leukemia. Survival after bone marrow transplantation for aplastic anemia or leukemia was poor in both cohorts. The frequency and types of cancer in DC are surpassed only by those in Fanconi anemia (FA), indicating that FA and DC have similarly high risks of adverse hematologic and neoplastic events, and patients with these diseases should be counseled and monitored similarly.
Project description:Dyskeratosis congenita (DC) is a multi system bone marrow failure syndrome characterized by muco-cutaneous abnormalities and an increased predisposition to malignancy. It exhibits considerable clinical and genetic heterogeneity. X-linked recessive, autosomal dominant and autosomal recessive forms of the disease are recognized. The X-linked recessive form is due to mutations in dyskerin, which is a component of both small nucleolar ribonuclear protein particles and the telomerase complex. Autosomal dominant DC is due to mutations in the RNA component of telomerase, TERC. As dyskerin and TERC are both components of the telomerase complex and all patients with DC have short telomeres it appears that the principal pathology in DC relates to telomerase dysfunction. The gene or genes involved in the recessive form of DC remain elusive, though genes whose products are required for telomere maintenance remain strong candidates. The study of DC has highlighted the critical role of telomerase and the consequences, including premature aging and malignancy, of its dysfunction.
Project description:Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome associated with characteristic mucocutaneous features and a variable series of other somatic abnormalities. The disease is heterogeneous at the genetic and clinical levels. Determination of the genetic basis of DC has established that the disease is caused by a number of genes, all of which encode products involved in telomere maintenance, either as part of telomerase or as part of the shelterin complex that caps and protects telomeres. There is overlap at the genetic and clinical levels with other, more common conditions, including aplastic anemia (AA), pulmonary fibrosis (PF), and liver cirrhosis. Although part of the spectrum of disorders known to be associated with DC, it has emerged that mutations in telomere maintenance genes can lead to the development of AA and PF in the absence of other DC features. Here we discuss the genetics of DC and its relationship to disease presentation.
Project description:Numerous genetic discoveries and the advent of clinical telomere length testing have led to the recognition of a spectrum of telomere biology disorders (TBDs) beyond the classic dyskeratosis congenita (DC) triad of nail dysplasia, abnormal skin pigmentation, and oral leukoplakia occurring with pediatric bone marrow failure. Patients with DC/TBDs have very short telomeres for their age and are at high risk of bone marrow failure, cancer, pulmonary fibrosis (PF), pulmonary arteriovenous malformations, liver disease, stenosis of the urethra, esophagus, and/or lacrimal ducts, avascular necrosis of the hips and/or shoulders, and other medical problems. However, many patients with TBDs do not develop classic DC features; they may present in middle age and/or with just 1 feature, such as PF or aplastic anemia. TBD-associated clinical manifestations are progressive and attributed to aberrant telomere biology caused by the X-linked recessive, autosomal dominant, autosomal recessive, or de novo occurrence of pathogenic germline variants in at least 18 different genes. This review describes the genetics and clinical manifestations of TBDs and highlights areas in need of additional clinical and basic science research.
Project description:Dyskeratosis congenita (DC) is a rare inherited syndrome exhibiting marked clinical and genetic heterogeneity. It is characterised by mucocutaneous abnormalities, bone marrow failure and a predisposition to cancer. Bone marrow failure is the principal cause of premature mortality. Studies over the last 10 years have demonstrated that DC is principally a disease of defective telomere maintenance. All DC patients have very short telomeres and the genetically characterised cases of DC have mutations in six genes which either encode components of the telomerase complex (DKC1, TERC, TERT, NOP10, NHP2) or shelterin (TINF2); these are important in the elongation and protection of the telomeric end, respectively. These advances have led to the recognition of cryptic forms of DC, such as presentations with aplastic anaemia and myelodysplasia. They have also increased our understanding of normal haematopoiesis and provided new insights to the aetiology of some cases of aplastic anaemia and related haematological disorders.
Project description:Dyskeratosis congenita (DC) is a rare inherited bone marrow failure syndrome caused by mutations in seven genes involved in telomere biology, with approximately 50% of cases remaining genetically uncharacterized. We report a patient with classic DC carrying a compound heterozygous mutation in the CTC1 (conserved telomere maintenance component 1) gene, which has recently implicated in the pleiotropic syndrome Coats plus. This report confirms a molecular link between DC and Coats plus and expands the genotype-phenotype complexity observed in telomere-related genetic disorders.