Unknown

Dataset Information

0

Genome-wide association and pathway analysis of feed efficiency in pigs reveal candidate genes and pathways for residual feed intake.


ABSTRACT: Residual feed intake (RFI) is a complex trait that is economically important for livestock production; however, the genetic and biological mechanisms regulating RFI are largely unknown in pigs. Therefore, the study aimed to identify single nucleotide polymorphisms (SNPs), candidate genes and biological pathways involved in regulating RFI using Genome-wide association (GWA) and pathway analyses. A total of 596 Yorkshire boars with phenotypes for two different measures of RFI (RFI1 and 2) and 60k genotypic data was used. GWA analysis was performed using a univariate mixed model and 12 and 7 SNPs were found to be significantly associated with RFI1 and RFI2, respectively. Several genes such as xin actin-binding repeat-containing protein 2 (XIRP2),tetratricopeptide repeat domain 29 (TTC29),suppressor of glucose, autophagy associated 1 (SOGA1),MAS1,G-protein-coupled receptor (GPCR) kinase 5 (GRK5),prospero-homeobox protein 1 (PROX1),GPCR 155 (GPR155), and FYVE domain containing the 26 (ZFYVE26) were identified as putative candidates for RFI based on their genomic location in the vicinity of these SNPs. Genes located within 50 kbp of SNPs significantly associated with RFI and RFI2 (q-value ? 0.2) were subsequently used for pathway analyses. These analyses were performed by assigning genes to biological pathways and then testing the association of individual pathways with RFI using a Fisher's exact test. Metabolic pathway was significantly associated with both RFIs. Other biological pathways regulating phagosome, tight junctions, olfactory transduction, and insulin secretion were significantly associated with both RFI traits when relaxed threshold for cut-off p-value was used (p ? 0.05). These results implied porcine RFI is regulated by multiple biological mechanisms, although the metabolic processes might be the most important. Olfactory transduction pathway controlling the perception of feed via smell, insulin pathway controlling food intake might be important pathways for RFI. Furthermore, our study revealed key genes and genetic variants that control feed efficiency that could potentially be useful for genetic selection of more feed efficient pigs.

SUBMITTER: Do DN 

PROVIDER: S-EPMC4159030 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

Genome-wide association and pathway analysis of feed efficiency in pigs reveal candidate genes and pathways for residual feed intake.

Do Duy N DN   Strathe Anders B AB   Ostersen Tage T   Pant Sameer D SD   Kadarmideen Haja N HN  

Frontiers in genetics 20140909


Residual feed intake (RFI) is a complex trait that is economically important for livestock production; however, the genetic and biological mechanisms regulating RFI are largely unknown in pigs. Therefore, the study aimed to identify single nucleotide polymorphisms (SNPs), candidate genes and biological pathways involved in regulating RFI using Genome-wide association (GWA) and pathway analyses. A total of 596 Yorkshire boars with phenotypes for two different measures of RFI (RFI1 and 2) and 60k  ...[more]

Similar Datasets

| S-EPMC3925773 | biostudies-literature
| S-EPMC3929553 | biostudies-literature
| S-EPMC6771153 | biostudies-literature
| S-EPMC7645311 | biostudies-literature
| S-EPMC9763391 | biostudies-literature
| S-EPMC8248129 | biostudies-literature
| S-EPMC6254087 | biostudies-literature
2022-04-07 | GSE198068 | GEO
| S-EPMC8063444 | biostudies-literature
2016-01-15 | E-MTAB-4179 | biostudies-arrayexpress