Unknown

Dataset Information

0

Glutathione S-transferase P influences redox and migration pathways in bone marrow.


ABSTRACT: To interrogate why redox homeostasis and glutathione S-transferase P (GSTP) are important in regulating bone marrow cell proliferation and migration, we isolated crude bone marrow, lineage negative and bone marrow derived-dendritic cells (BMDDCs) from both wild type (WT) and knockout (Gstp1/p2(-/-)) mice. Comparison of the two strains showed distinct thiol expression patterns. WT had higher baseline and reactive oxygen species-induced levels of S-glutathionylated proteins, some of which (sarco-endoplasmic reticulum Ca2(+)-ATPase) regulate Ca(2+) fluxes and subsequently influence proliferation and migration. Redox status is also a crucial determinant in the regulation of the chemokine system. CXCL12 chemotactic response was stronger in WT cells, with commensurate alterations in plasma membrane polarization/permeability and intracellular calcium fluxes; activities of the downstream kinases, ERK and Akt were also higher in WT. In addition, expression levels of the chemokine receptor CXCR4 and its associated phosphatase, SHP-2, were higher in WT. Inhibition of CXCR4 or SHP2 decreased the extent of CXCL12-induced migration in WT BMDDCs. The differential surface densities of CXCR4, SHP-2 and inositol trisphosphate receptor in WT and Gstp1/p2(-/-) cells correlated with the differential CXCR4 functional activities, as measured by the extent of chemokine-induced directional migration and differences in intracellular signaling. These observed differences contribute to our understanding of how genetic ablation of GSTP causes different levels of myeloproliferation and migration [corrected]

SUBMITTER: Zhang J 

PROVIDER: S-EPMC4162606 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications


To interrogate why redox homeostasis and glutathione S-transferase P (GSTP) are important in regulating bone marrow cell proliferation and migration, we isolated crude bone marrow, lineage negative and bone marrow derived-dendritic cells (BMDDCs) from both wild type (WT) and knockout (Gstp1/p2(-/-)) mice. Comparison of the two strains showed distinct thiol expression patterns. WT had higher baseline and reactive oxygen species-induced levels of S-glutathionylated proteins, some of which (sarco-e  ...[more]

Similar Datasets

| PRJEB33504 | ENA
| S-EPMC2730739 | biostudies-literature
| S-EPMC6295891 | biostudies-literature
| S-EPMC4453841 | biostudies-literature
| S-EPMC2783903 | biostudies-literature
| S-EPMC4687572 | biostudies-literature
| S-EPMC3834953 | biostudies-literature
| S-EPMC3125017 | biostudies-literature
| S-EPMC5434810 | biostudies-other
| S-EPMC8079946 | biostudies-literature