Unknown

Dataset Information

0

Migration of sea urchin primordial germ cells.


ABSTRACT: Small micromeres are produced at the fifth cleavage of sea urchin development. They express markers of primordial germ cells (PGCs), and are required for the production of gametes. In most animals, PGCs migrate from sites of formation to the somatic gonad. Here, we investigated whether they also exhibit similar migratory behaviors using live-cell imaging of small micromere plasma membranes.Early in gastrulation, small micromeres transition from non-motile epithelial cells, to motile quasi-mesenchymal cells. Late in gastrulation, at 43 hr post fertilization (HPF), they are embedded in the tip of the archenteron, but remain motile. From 43-49 HPF, they project numerous cortical blebs into the blastocoel, and filopodia that contact ectoderm. By 54 HPF, they begin moving in the plane of the blastoderm, often in a directed fashion, towards the coelomic pouches. Isolated small micromeres also produced blebs and filopodia.Previous work suggested that passive translocation governs some of the movement of small micromeres during gastrulation. Here we show that small micromeres are motile cells that can traverse the archenteron, change position along the left-right axis, and migrate to coelomic pouches. These motility mechanisms are likely to play an important role in their left-right segregation.

SUBMITTER: Campanale JP 

PROVIDER: S-EPMC4164171 | biostudies-literature | 2014 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Migration of sea urchin primordial germ cells.

Campanale Joseph P JP   Gökirmak Tufan T   Espinoza Jose A JA   Oulhen Nathalie N   Wessel Gary M GM   Hamdoun Amro A  

Developmental dynamics : an official publication of the American Association of Anatomists 20140430 7


<h4>Background</h4>Small micromeres are produced at the fifth cleavage of sea urchin development. They express markers of primordial germ cells (PGCs), and are required for the production of gametes. In most animals, PGCs migrate from sites of formation to the somatic gonad. Here, we investigated whether they also exhibit similar migratory behaviors using live-cell imaging of small micromere plasma membranes.<h4>Results</h4>Early in gastrulation, small micromeres transition from non-motile epith  ...[more]

Similar Datasets

| S-EPMC3245308 | biostudies-literature
| S-EPMC6106808 | biostudies-literature
| S-EPMC4949447 | biostudies-literature
| S-EPMC3757743 | biostudies-literature
| S-EPMC8058341 | biostudies-literature
| S-EPMC4521894 | biostudies-literature
| S-EPMC6447691 | biostudies-literature
| S-EPMC9636429 | biostudies-literature
| S-EPMC2567847 | biostudies-literature
| S-EPMC4632295 | biostudies-other