Unknown

Dataset Information

0

Toward a rationale for the PTC124 (Ataluren) promoted readthrough of premature stop codons: a computational approach and GFP-reporter cell-based assay.


ABSTRACT: The presence in the mRNA of premature stop codons (PTCs) results in protein truncation responsible for several inherited (genetic) diseases. A well-known example of these diseases is cystic fibrosis (CF), where approximately 10% (worldwide) of patients have nonsense mutations in the CF transmembrane regulator (CFTR) gene. PTC124 (3-(5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl)-benzoic acid), also known as Ataluren, is a small molecule that has been suggested to allow PTC readthrough even though its target has yet to be identified. In the lack of a general consensus about its mechanism of action, we experimentally tested the ability of PTC124 to promote the readthrough of premature termination codons by using a new reporter. The reporter vector was based on a plasmid harboring the H2B histone coding sequence fused in frame with the green fluorescent protein (GFP) cDNA, and a TGA stop codon was introduced in the H2B-GFP gene by site-directed mutagenesis. Additionally, an unprecedented computational study on the putative supramolecular interaction between PTC124 and an 11-codon (33-nucleotides) sequence corresponding to a CFTR mRNA fragment containing a central UGA nonsense mutation showed a specific interaction between PTC124 and the UGA codon. Altogether, the H2B-GFP-opal based assay and the molecular dynamics (MD) simulation support the hypothesis that PTC124 is able to promote the specific readthrough of internal TGA premature stop codons.

SUBMITTER: Lentini L 

PROVIDER: S-EPMC4167060 | biostudies-literature | 2014 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Toward a rationale for the PTC124 (Ataluren) promoted readthrough of premature stop codons: a computational approach and GFP-reporter cell-based assay.

Lentini Laura L   Melfi Raffaella R   Di Leonardo Aldo A   Spinello Angelo A   Barone Giampaolo G   Pace Andrea A   Palumbo Piccionello Antonio A   Pibiri Ivana I  

Molecular pharmaceutics 20140207 3


The presence in the mRNA of premature stop codons (PTCs) results in protein truncation responsible for several inherited (genetic) diseases. A well-known example of these diseases is cystic fibrosis (CF), where approximately 10% (worldwide) of patients have nonsense mutations in the CF transmembrane regulator (CFTR) gene. PTC124 (3-(5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl)-benzoic acid), also known as Ataluren, is a small molecule that has been suggested to allow PTC readthrough even though its  ...[more]

Similar Datasets

| S-EPMC8398184 | biostudies-literature
| S-EPMC3692445 | biostudies-literature
| S-EPMC4023889 | biostudies-literature
| S-EPMC5430635 | biostudies-literature
| S-EPMC5827411 | biostudies-literature
| S-EPMC7918605 | biostudies-literature
| S-EPMC6511968 | biostudies-literature
| S-EPMC3500177 | biostudies-literature
| S-EPMC7838340 | biostudies-literature
| S-EPMC2754532 | biostudies-literature