Unknown

Dataset Information

0

Latent factor regression models for grouped outcomes.


ABSTRACT: We consider regression models for multiple correlated outcomes, where the outcomes are nested in domains. We show that random effect models for this nested situation fit into a standard factor model framework, which leads us to view the modeling options as a spectrum between parsimonious random effect multiple outcomes models and more general continuous latent factor models. We introduce a set of identifiable models along this spectrum that extend an existing random effect model for multiple outcomes nested in domains. We characterize the tradeoffs between parsimony and flexibility in this set of models, applying them to both simulated data and data relating sexually dimorphic traits in male infants to explanatory variables.

SUBMITTER: Woodard DB 

PROVIDER: S-EPMC4171058 | biostudies-literature | 2013 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Latent factor regression models for grouped outcomes.

Woodard D B DB   Love T M T TM   Thurston S W SW   Ruppert D D   Sathyanarayana S S   Swan S H SH  

Biometrics 20130711 3


We consider regression models for multiple correlated outcomes, where the outcomes are nested in domains. We show that random effect models for this nested situation fit into a standard factor model framework, which leads us to view the modeling options as a spectrum between parsimonious random effect multiple outcomes models and more general continuous latent factor models. We introduce a set of identifiable models along this spectrum that extend an existing random effect model for multiple out  ...[more]

Similar Datasets

| S-EPMC7331150 | biostudies-literature
| S-EPMC3530663 | biostudies-literature
| S-EPMC6540566 | biostudies-literature
| S-EPMC7530096 | biostudies-literature
| S-EPMC3842118 | biostudies-other
| S-EPMC5965647 | biostudies-literature
| S-EPMC6928252 | biostudies-literature
| S-EPMC8236065 | biostudies-literature
| S-EPMC5587666 | biostudies-literature
| S-EPMC6964974 | biostudies-literature