Unknown

Dataset Information

0

Using Drosophila melanogaster to identify chemotherapy toxicity genes.


ABSTRACT: The severity of the toxic side effects of chemotherapy shows a great deal of interindividual variability, and much of this variation is likely genetically based. Simple DNA tests predictive of toxic side effects could revolutionize the way chemotherapy is carried out. Due to the challenges in identifying polymorphisms that affect toxicity in humans, we use Drosophila fecundity following oral exposure to carboplatin, gemcitabine and mitomycin C as a model system to identify naturally occurring DNA variants predictive of toxicity. We use the Drosophila Synthetic Population Resource (DSPR), a panel of recombinant inbred lines derived from a multiparent advanced intercross, to map quantitative trait loci affecting chemotoxicity. We identify two QTL each for carboplatin and gemcitabine toxicity and none for mitomycin. One QTL is associated with fly orthologs of a priori human carboplatin candidate genes ABCC2 and MSH2, and a second QTL is associated with fly orthologs of human gemcitabine candidate genes RRM2 and RRM2B. The third, a carboplatin QTL, is associated with a posteriori human orthologs from solute carrier family 7A, INPP4A&B, and NALCN. The fourth, a gemcitabine QTL that also affects methotrexate toxicity, is associated with human ortholog GPx4. Mapped QTL each explain a significant fraction of variation in toxicity, yet individual SNPs and transposable elements in the candidate gene regions fail to singly explain QTL peaks. Furthermore, estimates of founder haplotype effects are consistent with genes harboring several segregating functional alleles. We find little evidence for nonsynonymous SNPs explaining mapped QTL; thus it seems likely that standing variation in toxicity is due to regulatory alleles.

SUBMITTER: King EG 

PROVIDER: S-EPMC4174942 | biostudies-literature | 2014 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Using Drosophila melanogaster to identify chemotherapy toxicity genes.

King Elizabeth G EG   Kislukhin Galina G   Walters Kelli N KN   Long Anthony D AD  

Genetics 20140901 1


The severity of the toxic side effects of chemotherapy shows a great deal of interindividual variability, and much of this variation is likely genetically based. Simple DNA tests predictive of toxic side effects could revolutionize the way chemotherapy is carried out. Due to the challenges in identifying polymorphisms that affect toxicity in humans, we use Drosophila fecundity following oral exposure to carboplatin, gemcitabine and mitomycin C as a model system to identify naturally occurring DN  ...[more]

Similar Datasets

| S-EPMC3303944 | biostudies-literature
| S-EPMC7782319 | biostudies-literature
| S-EPMC6325060 | biostudies-literature
| S-EPMC4021436 | biostudies-literature
| S-EPMC5472918 | biostudies-literature
| S-EPMC2838750 | biostudies-literature
| S-EPMC2667016 | biostudies-literature
| S-EPMC2516102 | biostudies-literature
| S-EPMC10468303 | biostudies-literature
| S-EPMC6643872 | biostudies-literature