Unknown

Dataset Information

0

RNA-Seq alignment to individualized genomes improves transcript abundance estimates in multiparent populations.


ABSTRACT: Massively parallel RNA sequencing (RNA-seq) has yielded a wealth of new insights into transcriptional regulation. A first step in the analysis of RNA-seq data is the alignment of short sequence reads to a common reference genome or transcriptome. Genetic variants that distinguish individual genomes from the reference sequence can cause reads to be misaligned, resulting in biased estimates of transcript abundance. Fine-tuning of read alignment algorithms does not correct this problem. We have developed Seqnature software to construct individualized diploid genomes and transcriptomes for multiparent populations and have implemented a complete analysis pipeline that incorporates other existing software tools. We demonstrate in simulated and real data sets that alignment to individualized transcriptomes increases read mapping accuracy, improves estimation of transcript abundance, and enables the direct estimation of allele-specific expression. Moreover, when applied to expression QTL mapping we find that our individualized alignment strategy corrects false-positive linkage signals and unmasks hidden associations. We recommend the use of individualized diploid genomes over reference sequence alignment for all applications of high-throughput sequencing technology in genetically diverse populations.

SUBMITTER: Munger SC 

PROVIDER: S-EPMC4174954 | biostudies-literature | 2014 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications


Massively parallel RNA sequencing (RNA-seq) has yielded a wealth of new insights into transcriptional regulation. A first step in the analysis of RNA-seq data is the alignment of short sequence reads to a common reference genome or transcriptome. Genetic variants that distinguish individual genomes from the reference sequence can cause reads to be misaligned, resulting in biased estimates of transcript abundance. Fine-tuning of read alignment algorithms does not correct this problem. We have dev  ...[more]

Similar Datasets

2014-06-10 | E-GEOD-45684 | biostudies-arrayexpress
2014-06-10 | GSE45684 | GEO
| S-EPMC6118309 | biostudies-literature
| S-EPMC7487471 | biostudies-literature
| S-EPMC5514313 | biostudies-literature
| S-EPMC2394757 | biostudies-literature
| S-EPMC4712774 | biostudies-literature
| S-EPMC4174926 | biostudies-literature
| S-EPMC9210298 | biostudies-literature
| S-EPMC5143225 | biostudies-literature