Unknown

Dataset Information

0

Forest stand growth dynamics in Central Europe have accelerated since 1870.


ABSTRACT: Forest ecosystems have been exposed to climate change for more than 100 years, whereas the consequences on forest growth remain elusive. Based on the oldest existing experimental forest plots in Central Europe, we show that, currently, the dominant tree species Norway spruce and European beech exhibit significantly faster tree growth (+32 to 77%), stand volume growth (+10 to 30%) and standing stock accumulation (+6 to 7%) than in 1960. Stands still follow similar general allometric rules, but proceed more rapidly through usual trajectories. As forest stands develop faster, tree numbers are currently 17-20% lower than in past same-aged stands. Self-thinning lines remain constant, while growth rates increase indicating the stock of resources have not changed, while growth velocity and turnover have altered. Statistical analyses of the experimental plots, and application of an ecophysiological model, suggest that mainly the rise in temperature and extended growing seasons contribute to increased growth acceleration, particularly on fertile sites.

SUBMITTER: Pretzsch H 

PROVIDER: S-EPMC4175583 | biostudies-literature | 2014 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Forest stand growth dynamics in Central Europe have accelerated since 1870.

Pretzsch Hans H   Biber Peter P   Schütze Gerhard G   Uhl Enno E   Rötzer Thomas T  

Nature communications 20140912


Forest ecosystems have been exposed to climate change for more than 100 years, whereas the consequences on forest growth remain elusive. Based on the oldest existing experimental forest plots in Central Europe, we show that, currently, the dominant tree species Norway spruce and European beech exhibit significantly faster tree growth (+32 to 77%), stand volume growth (+10 to 30%) and standing stock accumulation (+6 to 7%) than in 1960. Stands still follow similar general allometric rules, but pr  ...[more]

Similar Datasets

| S-EPMC9325057 | biostudies-literature
| S-EPMC10505178 | biostudies-literature
| S-EPMC7677315 | biostudies-literature
| S-EPMC9700325 | biostudies-literature
| S-EPMC6684163 | biostudies-literature
| S-EPMC6988544 | biostudies-literature
| S-EPMC7137943 | biostudies-literature
| S-EPMC5292963 | biostudies-literature
| S-EPMC6262723 | biostudies-literature