Acrolein decreases endothelial cell migration and insulin sensitivity through induction of let-7a.
Ontology highlight
ABSTRACT: Acrolein is a major reactive component of vehicle exhaust, and cigarette and wood smoke. It is also present in several food substances and is generated endogenously during inflammation and lipid peroxidation. Although previous studies have shown that dietary or inhalation exposure to acrolein results in endothelial activation, platelet activation, and accelerated atherogenesis, the basis for these effects is unknown. Moreover, the effects of acrolein on microRNA (miRNA) have not been studied. Using AGILENT miRNA microarray high-throughput technology, we found that treatment of cultured human umbilical vein endothelial cells with acrolein led to a significant (>1.5-fold) upregulation of 12, and downregulation of 15, miRNAs. Among the miRNAs upregulated were members of the let-7 family and this upregulation was associated with decreased expression of their protein targets, ?3 integrin, Cdc34, and K-Ras. Exposure to acrolein attenuated ?3 integrin-dependent migration and reduced Akt phosphorylation in response to insulin. These effects of acrolein on endothelial cell migration and insulin signaling were reversed by expression of a let-7a inhibitor. Also, inhalation exposure of mice to acrolein (1 ppm x 6 h/day x 4 days) upregulated let-7a and led to a decrease in insulin-stimulated Akt phosphorylation in the aorta. These results suggest that acrolein exposure has broad effects on endothelial miRNA repertoire and that attenuation of endothelial cell migration and insulin signaling by acrolein is mediated in part by the upregulation of let-7a. This mechanism may be a significant feature of vascular injury caused by inflammation, oxidized lipids, and exposure to environmental pollutants.
SUBMITTER: O'Toole TE
PROVIDER: S-EPMC4176051 | biostudies-literature | 2014 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA