Ontology highlight
ABSTRACT: Introduction
While a number of studies have illustrated and analyzed 3D models of inner ears in higher vertebrates, inner ears in fishes have rarely been investigated in 3D, especially with regard to the sensory epithelia of the end organs, the maculae. It has been suggested that the 3D curvature of these maculae may also play an important role in hearing abilities in fishes. We therefore set out to develop a fast and reliable approach for detailed 3D visualization of whole inner ears as well as maculae.Results
High-resolution microCT imaging of black mollies Poecilia sp. (Poeciliidae, Teleostei) and Steatocranus tinanti (Cichlidae, Teleostei) stained with phosphotungstic acid (PTA) resulted in good tissue contrast, enabling us to perform a reliable 3D reconstruction of all three sensory maculae of the inner ears. Comparison with maculae that have been 3D reconstructed based on histological serial sections and phalloidin-stained maculae showed high congruence in overall shape of the maculae studied here.Conclusions
PTA staining and subsequent high-resolution contrast enhanced microCT imaging is a powerful method to obtain 3D models of fish inner ears and maculae in a fast and more reliable manner. Future studies investigating functional morphology, phylogenetic potential of inner ear features, or evolution of hearing and inner ear specialization in fishes may benefit from the use of 3D models of inner ears and maculae.
SUBMITTER: Schulz-Mirbach T
PROVIDER: S-EPMC4177137 | biostudies-literature | 2013 Oct
REPOSITORIES: biostudies-literature
Schulz-Mirbach Tanja T Heß Martin M Metscher Brian D BD
Frontiers in zoology 20131027 1
<h4>Introduction</h4>While a number of studies have illustrated and analyzed 3D models of inner ears in higher vertebrates, inner ears in fishes have rarely been investigated in 3D, especially with regard to the sensory epithelia of the end organs, the maculae. It has been suggested that the 3D curvature of these maculae may also play an important role in hearing abilities in fishes. We therefore set out to develop a fast and reliable approach for detailed 3D visualization of whole inner ears as ...[more]