Project description:To confirm circulation of Anajatuba virus in Maranhao, Brazil, we conducted a serologic survey (immunoglobulin G ELISA) and phylogenetic studies (nucleocapsid gene sequences) of hantaviruses from wild rodents and persons with hantavirus pulmonary syndrome. This virus is transmitted by Oligoryzomys fornesi rodents and is responsible for hantavirus pulmonary syndrome in this region.
Project description:Hantavirus pulmonary syndrome (HPS) is an increasing health problem in Brazil because of encroachment of sprawling urban, agricultural, and cattle-raising areas into habitats of subfamily Sigmodontinae rodents, which serve as hantavirus reservoirs. From 1993 through June 2007, a total of 884 cases of HPS were reported in Brazil (case-fatality rate 39%). To better understand this emerging disease, we collected 89 human serum samples and 68 rodent lung samples containing antibodies to hantavirus from a 2,500-km-wide area in Brazil. RNA was isolated from human samples and rodent tissues and subjected to reverse transcription-PCR. Partial sequences of nucleocapsid protein and glycoprotein genes from 22 human and 16 rodent sources indicated only Araraquara virus and Juquitiba virus lineages. The case-fatality rate of HPS was higher in the area with Araraquara virus. This virus, which may be the most virulent hantavirus in Brazil, was associated with areas that have had greater anthropogenic changes.
Project description:We report the results of an investigation into a fatal case of hantavirus pulmonary syndrome (HPS) in Rio de Janeiro State, Brazil, where the disease had not been reported previous to 2015. Following the notification of an HPS case, serum samples were collected from the household members and work contacts of the HPS patient and tested for antibody to hantaviruses. Seroprevalence of 22% (10/45) was indicated for hantavirus out of 45 human samples tested. Blood and tissue samples were collected from 72 rodents during fieldwork to evaluate the prevalence of hantavirus infection, by using enzyme-linked immunosorbent assay IgG, and to characterize the rodent hantavirus reservoir(s), by reverse transcription polymerase chain reaction and sequencing. Antibody prevalence was 6.9%. The circulation of a single genotype, the Juquitiba hantavirus, carried by two rodent species, black-footed pigmy rice rat (Oligoryzomys nigripes) and cursor grass mouse (Akodon cursor), was shown by analysis of the nucleotide sequences of the S segment. Juquitiba hantavirus circulates in rodents of various species, but mainly in the black-footed pigmy rice rat. HPS is a newly recognized clinical entity in Rio de Janeiro State and should be considered in patients with febrile illness and acute respiratory distress.
Project description:Andes virus is unique among hantaviruses because it can be transmitted from person to person. This mechanism was previously supported by epidemiologic data and genetic evidence based only on partial sequences. We used full-length virus sequencing to confirm person-to-person transmission of this virus in a cluster of 3 cases in Argentina in 2014.
Project description:We report viral RNA loads and antibody responses in 6 severe human cases of Maripa virus infection (2 favorable outcomes) and monitored both measures during the 6-week course of disease in 1 nonfatal case. Further research is needed to determine prevalence of this virus and its effect on other hantaviruses.
Project description:BackgroundHantavirus disease in humans is rare but frequently lethal in the Neotropics. Several abundant and widely distributed Sigmodontinae rodents are the primary hosts of Orthohantavirus and, in combination with other factors, these rodents can shape hantavirus disease. Here, we assessed the influence of host diversity, climate, social vulnerability and land use change on the risk of hantavirus disease in Brazil over 24 years.MethodsLandscape variables (native forest, forestry, sugarcane, maize and pasture), climate (temperature and precipitation), and host biodiversity (derived through niche models) were used in spatiotemporal models, using the 5570 Brazilian municipalities as units of analysis.ResultsAmounts of native forest and sugarcane, combined with temperature, were the most important factors influencing the increase of disease risk. Population at risk (rural workers) and rodent host diversity also had a positive effect on disease risk.ConclusionsLand use change-especially the conversion of native areas to sugarcane fields-can have a significant impact on hantavirus disease risk, likely by promoting the interaction between the people and the infected rodents. Our results demonstrate the importance of understanding the interactions between landscape change, rodent diversity, and hantavirus disease incidence, and suggest that land use policy should consider disease risk. Meanwhile, our risk map can be used to help allocate preventive measures to avoid disease.
Project description:The pathophysiology of hantavirus pulmonary syndrome (HPS) remains unclear because of a lack of surrogate disease models with which to perform pathogenesis studies. Nonhuman primates (NHP) are considered the gold standard model for studying the underlying immune activation/suppression associated with immunopathogenic viruses such as hantaviruses; however, to date an NHP model for HPS has not been described. Here we show that rhesus macaques infected with Sin Nombre virus (SNV), the primary etiological agent of HPS in North America, propagated in deer mice develop HPS, which is characterized by thrombocytopenia, leukocytosis, and rapid onset of respiratory distress caused by severe interstitial pneumonia. Despite establishing a systemic infection, SNV differentially activated host responses exclusively in the pulmonary endothelium, potentially the mechanism leading to acute severe respiratory distress. This study presents a unique chronological characterization of SNV infection and provides mechanistic data into the pathophysiology of HPS in a closely related surrogate animal model. We anticipate this model will advance our understanding of HPS pathogenesis and will greatly facilitate research toward the development of effective therapeutics and vaccines against hantaviral diseases.
Project description:We report the first complete genome sequence of Maripa virus identified in 2009 from a patient with hantavirus pulmonary syndrome in French Guiana. Maripa virus corresponds to a new variant of the Rio Mamoré virus species in the Bunyaviridae family, genus Hantavirus.
Project description:Hantavirus pulmonary syndrome (HPS) is a human disease caused by a newly identified hantavirus, which we will refer to as Four Corners virus (FCV). FCV is related most closely to Puumala virus (PUU) and to Prospect Hill virus (PHV). Twenty-five acute HPS serum samples were tested for immunoglobulin G (IgG) and IgM antibody reactivities to FCV-encoded recombinant proteins in Western blot (immunoblot) assays. All HPS serum samples contained both IgG and IgM antibodies to the FCV nucleocapsid (N) protein. FCV N antibodies cross-reacted with PUU N and PHV N proteins. A dominant FCV N epitope was mapped to the segment between amino acids 17 and 59 (QLVTARQKLKDAERAVELDPDDVNKSTLQSRRAAVSALETKLG). All HPS serum samples contained IgG antibodies to the FCV glycoprotein-1 (G1) protein, and 21 of 25 serum samples contained FCV G1 IgM antibodies. The FCV G1 antibodies did not cross-react with PUU G1 and PHV G1 proteins. The FCV G1 type-specific antibody reactivity mapped to a segment between amino acids 59 and 89 (LKIESSCNFDLHVPATTTQKYNQVDWTKKSS). One hundred twenty-eight control serum samples were tested for IgG reactivities to the FCV N and G1 proteins. Nine (7.0%) contained FCV N reactivities, 3 (2.3%) contained FCV G1 reactivities, and one (0.8%) contained both FCV N and FCV G1 reactivities. The epitopes recognized by antibodies present in control serum samples were different from the epitopes recognized by HPS antibodies, suggesting that the control antibody reactivities were unrelated to FCV infections. These reagents constitute a type-specific assay for FCV antibodies.