Unknown

Dataset Information

0

Genome-wide association study reveals novel quantitative trait Loci associated with resistance to multiple leaf spot diseases of spring wheat.


ABSTRACT: Accelerated wheat development and deployment of high-yielding, climate resilient, and disease resistant cultivars can contribute to enhanced food security and sustainable intensification. To facilitate gene discovery, we assembled an association mapping panel of 528 spring wheat landraces of diverse geographic origin for a genome-wide association study (GWAS). All accessions were genotyped using an Illumina Infinium 9K wheat single nucleotide polymorphism (SNP) chip and 4781 polymorphic SNPs were used for analysis. To identify loci underlying resistance to the major leaf spot diseases and to better understand the genomic patterns, we quantified population structure, allelic diversity, and linkage disequilibrium. Our results showed 32 loci were significantly associated with resistance to the major leaf spot diseases. Further analysis identified QTL effective against major leaf spot diseases of wheat which appeared to be novel and others that were previously identified by association analysis using Diversity Arrays Technology (DArT) and bi-parental mapping. In addition, several identified SNPs co-localized with genes that have been implicated in plant disease resistance. Future work could aim to select the putative novel loci and pyramid them in locally adapted wheat cultivars to develop broad-spectrum resistance to multiple leaf spot diseases of wheat via marker-assisted selection (MAS).

SUBMITTER: Gurung S 

PROVIDER: S-EPMC4182470 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

Genome-wide association study reveals novel quantitative trait Loci associated with resistance to multiple leaf spot diseases of spring wheat.

Gurung Suraj S   Mamidi Sujan S   Bonman J Michael JM   Xiong Mai M   Brown-Guedira Gina G   Adhikari Tika B TB  

PloS one 20140930 9


Accelerated wheat development and deployment of high-yielding, climate resilient, and disease resistant cultivars can contribute to enhanced food security and sustainable intensification. To facilitate gene discovery, we assembled an association mapping panel of 528 spring wheat landraces of diverse geographic origin for a genome-wide association study (GWAS). All accessions were genotyped using an Illumina Infinium 9K wheat single nucleotide polymorphism (SNP) chip and 4781 polymorphic SNPs wer  ...[more]

Similar Datasets

| S-EPMC2324085 | biostudies-other
| S-EPMC10975456 | biostudies-literature
| S-EPMC7141615 | biostudies-literature
| S-EPMC8678907 | biostudies-literature
| S-EPMC6165080 | biostudies-literature
| S-EPMC8747073 | biostudies-literature
| S-EPMC8818699 | biostudies-literature
| S-EPMC7014124 | biostudies-literature
| S-EPMC5511346 | biostudies-literature
| S-EPMC4782216 | biostudies-literature