EGF promotes the shedding of soluble E-cadherin in an ADAM10-dependent manner in prostate epithelial cells.
Ontology highlight
ABSTRACT: During the progression of prostate cancer, the epithelial adhesion molecule E-cadherin is cleaved from the cell surface by ADAM15 proteolytic processing, generating an extracellular 80kDa fragment referred to as soluble E-cadherin (sE-cad). Contrary to observations in cancer, the generation of sE-cad appears to correlate with ADAM10 activity in benign prostatic epithelium. The ADAM10-specific inhibitor INCB8765 and the ADAM10 prodomain inhibit the generation of sE-cad, as well as downstream signaling and cell proliferation. Addition of EGF or amphiregulin (AREG) to these untransformed cell lines increases the amount of sE-cad shed into the conditioned media, as well as sE-cad bound to EGFR. EGF-associated shedding appears to be mediated by ADAM10 as shRNA knockdown of ADAM10 results in reduced shedding of sE-cad. To examine the physiologic role of sE-cad on benign prostatic epithelium, we treated BPH-1 and large T immortalized prostate epithelial cells (PrEC) with an sE-cad chimera comprised of the human Fc domain of IgG(1), fused to the extracellular domains of E-cadherin (Fc-Ecad). The treatment of untransformed prostate epithelial cells with Fc-Ecad resulted in phosphorylation of EGFR and downstream signaling through ERK and increased cell proliferation. Pre-treating BPH-1 and PrEC cells with cetuximab, a therapeutic monoclonal antibody against EGFR, decreased the ability of Fc-Ecad to induce EGFR phosphorylation, downstream signaling, and proliferation. These data suggest that ADAM10-generated sE-cad may have a role in EGFR signaling independent of traditional EGFR ligands.
SUBMITTER: Grabowska MM
PROVIDER: S-EPMC4183068 | biostudies-literature | 2012 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA