Unknown

Dataset Information

0

G-quadruplexes regulate Epstein-Barr virus-encoded nuclear antigen 1 mRNA translation.


ABSTRACT: Viruses that establish latent infections have evolved unique mechanisms to avoid host immune recognition. Maintenance proteins of these viruses regulate their synthesis to levels sufficient for maintaining persistent infection but below threshold levels for host immune detection. The mechanisms governing this finely tuned regulation of viral latency are unknown. Here we show that mRNAs encoding gammaherpesviral maintenance proteins contain within their open reading frames clusters of unusual structural elements, G-quadruplexes, which are responsible for the cis-acting regulation of viral mRNA translation. By studying the Epstein-Barr virus-encoded nuclear antigen 1 (EBNA1) mRNA, we demonstrate that destabilization of G-quadruplexes using antisense oligonucleotides increases EBNA1 mRNA translation. In contrast, pretreatment with a G-quadruplex-stabilizing small molecule, pyridostatin, decreases EBNA1 synthesis, highlighting the importance of G-quadruplexes within virally encoded transcripts as unique regulatory signals for translational control and immune evasion. Furthermore, these findings suggest alternative therapeutic strategies focused on targeting RNA structure within viral ORFs.

SUBMITTER: Murat P 

PROVIDER: S-EPMC4188979 | biostudies-literature | 2014 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

G-quadruplexes regulate Epstein-Barr virus-encoded nuclear antigen 1 mRNA translation.

Murat Pierre P   Zhong Jie J   Lekieffre Lea L   Cowieson Nathan P NP   Clancy Jennifer L JL   Preiss Thomas T   Balasubramanian Shankar S   Khanna Rajiv R   Tellam Judy J  

Nature chemical biology 20140316 5


Viruses that establish latent infections have evolved unique mechanisms to avoid host immune recognition. Maintenance proteins of these viruses regulate their synthesis to levels sufficient for maintaining persistent infection but below threshold levels for host immune detection. The mechanisms governing this finely tuned regulation of viral latency are unknown. Here we show that mRNAs encoding gammaherpesviral maintenance proteins contain within their open reading frames clusters of unusual str  ...[more]

Similar Datasets

2021-11-12 | GSE75198 | GEO
| S-EPMC2954899 | biostudies-other
| S-EPMC5899200 | biostudies-literature
| S-EPMC4810642 | biostudies-literature
2015-01-06 | E-GEOD-59181 | biostudies-arrayexpress
2021-08-22 | PXD022970 | Pride
2015-01-06 | GSE59181 | GEO
| S-EPMC3506544 | biostudies-literature
| S-EPMC2438297 | biostudies-literature
| S-EPMC3017193 | biostudies-literature