Ontology highlight
ABSTRACT: Introduction
Campylobacter jejuni is a leading cause of bacterial gastroenteritis worldwide. At present the identity of host-pathogen interactions that promote successful bacterial colonisation remain ill defined. Herein, we aimed to investigate C. jejuni-mediated effects on dendritic cell (DC) immunity.Results
We found C. jejuni to be a potent inducer of human and murine DC interleukin 10 (IL-10) in vitro, a cellular event that was MyD88- and p38 MAPK-signalling dependent. Utilizing a series of C. jejuni isogenic mutants we found the major flagellin protein, FlaA, modulated IL-10 expression, an intriguing observation as C. jejuni FlaA is not a TLR5 agonist. Further analysis revealed pseudaminic acid residues on the flagella contributed to DC IL-10 expression. We identified the ability of both viable C. jejuni and purified flagellum to bind to Siglec-10, an immune-modulatory receptor. In vitro infection of Siglec-10 overexpressing cells resulted in increased IL-10 expression in a p38-dependent manner. Detection of Siglec-10 on intestinal CD11c(+) CD103(+) DCs added further credence to the notion that this novel interaction may contribute to immune outcome during human infection.Conclusions
We propose that unlike the Salmonella Typhimurium flagella-TLR5 driven pro-inflammatory axis, C. jejuni flagella instead promote an anti-inflammatory axis via glycan-Siglec-10 engagement.
SUBMITTER: Stephenson HN
PROVIDER: S-EPMC4195440 | biostudies-literature | 2014 Nov
REPOSITORIES: biostudies-literature
Stephenson Holly N HN Mills Dominic C DC Jones Hannah H Milioris Enea E Copland Alastair A Dorrell Nick N Wren Brendan W BW Crocker Paul R PR Escors David D Bajaj-Elliott Mona M
The Journal of infectious diseases 20140513 9
<h4>Introduction</h4>Campylobacter jejuni is a leading cause of bacterial gastroenteritis worldwide. At present the identity of host-pathogen interactions that promote successful bacterial colonisation remain ill defined. Herein, we aimed to investigate C. jejuni-mediated effects on dendritic cell (DC) immunity.<h4>Results</h4>We found C. jejuni to be a potent inducer of human and murine DC interleukin 10 (IL-10) in vitro, a cellular event that was MyD88- and p38 MAPK-signalling dependent. Utili ...[more]