Unknown

Dataset Information

0

Human DNA tumor viruses generate alternative reading frame proteins through repeat sequence recoding.


ABSTRACT: Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) are human DNA tumor viruses that express nuclear antigens [latency-associated nuclear antigen 1 (LANA1) and Epstein-Barr nuclear antigen 1 (EBNA1)] necessary to maintain and replicate the viral genome. We report here that both LANA1 and EBNA1 undergo highly efficient +1/-2 programmed ribosomal frameshifting to generate previously undescribed alternative reading frame (ARF) proteins in their repeat regions. EBNA1(ARF) encodes a KSHV LANA-like glutamine- and glutamic acid-rich protein, whereas KSHV LANA1(ARF) encodes a serine/arginine-like protein. Repeat sequence recoding has not been described previously for human DNA viruses. Programmed frameshifting (recoding) to generate multiple proteins from one RNA sequence can increase the coding capacity of a virus, without incurring a selective penalty against increased capsid size. The presence of similar repeat sequences in cellular genes, such as huntingtin, suggests that a comparison of repeat recoding in virus and human systems may provide functional and mechanistic insights for both systems.

SUBMITTER: Kwun HJ 

PROVIDER: S-EPMC4205619 | biostudies-literature | 2014 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Human DNA tumor viruses generate alternative reading frame proteins through repeat sequence recoding.

Kwun Hyun Jin HJ   Toptan Tuna T   Ramos da Silva Suzane S   Atkins John F JF   Moore Patrick S PS   Chang Yuan Y  

Proceedings of the National Academy of Sciences of the United States of America 20140930 41


Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) are human DNA tumor viruses that express nuclear antigens [latency-associated nuclear antigen 1 (LANA1) and Epstein-Barr nuclear antigen 1 (EBNA1)] necessary to maintain and replicate the viral genome. We report here that both LANA1 and EBNA1 undergo highly efficient +1/-2 programmed ribosomal frameshifting to generate previously undescribed alternative reading frame (ARF) proteins in their repeat regions. EBNA1(ARF) enc  ...[more]

Similar Datasets

2012-03-15 | E-MEXP-3476 | biostudies-arrayexpress
2016-04-12 | GSE80156 | GEO
2021-09-08 | PXD016007 | Pride
| S-EPMC6750092 | biostudies-literature
| S-EPMC113055 | biostudies-literature
| S-EPMC5742262 | biostudies-literature
| S-EPMC3387156 | biostudies-literature