Unknown

Dataset Information

0

Androgen receptor is the key transcriptional mediator of the tumor suppressor SPOP in prostate cancer.


ABSTRACT: Somatic missense mutations in the substrate-binding pocket of the E3 ubiquitin ligase adaptor SPOP are present in up to 15% of human prostate adenocarcinomas, but are rare in other malignancies, suggesting a prostate-specific mechanism of action. SPOP promotes ubiquitination and degradation of several protein substrates, including the androgen receptor (AR) coactivator SRC-3. However, the relative contributions that SPOP substrates may make to the pathophysiology of SPOP-mutant (mt) prostate adenocarcinomas are unknown. Using an unbiased bioinformatics approach, we determined that the gene expression profile of prostate adenocarcinoma cells engineered to express mt-SPOP overlaps greatly with the gene signature of both SRC-3 and AR transcriptional output, with a stronger similarity to AR than SRC-3. This finding suggests that in addition to its SRC-3-mediated effects, SPOP also exerts SRC-3-independent effects that are AR-mediated. Indeed, we found that wild-type (wt) but not prostate adenocarcinoma-associated mutants of SPOP promoted AR ubiquitination and degradation, acting directly through a SPOP-binding motif in the hinge region of AR. In support of these results, tumor xenografts composed of prostate adenocarcinoma cells expressing mt-SPOP exhibited higher AR protein levels and grew faster than tumors composed of prostate adenocarcinoma cells expressing wt-SPOP. Furthermore, genetic ablation of SPOP was sufficient to increase AR protein levels in mouse prostate. Examination of public human prostate adenocarcinoma datasets confirmed a strong link between transcriptomic profiles of mt-SPOP and AR. Overall, our studies highlight the AR axis as the key transcriptional output of SPOP in prostate adenocarcinoma and provide an explanation for the prostate-specific tumor suppressor role of wt-SPOP.

SUBMITTER: Geng C 

PROVIDER: S-EPMC4209379 | biostudies-literature | 2014 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications


Somatic missense mutations in the substrate-binding pocket of the E3 ubiquitin ligase adaptor SPOP are present in up to 15% of human prostate adenocarcinomas, but are rare in other malignancies, suggesting a prostate-specific mechanism of action. SPOP promotes ubiquitination and degradation of several protein substrates, including the androgen receptor (AR) coactivator SRC-3. However, the relative contributions that SPOP substrates may make to the pathophysiology of SPOP-mutant (mt) prostate ade  ...[more]

Similar Datasets

| S-EPMC2843478 | biostudies-literature
| S-EPMC2527886 | biostudies-other
| S-EPMC6889295 | biostudies-literature
| S-EPMC3729259 | biostudies-literature
| S-EPMC5511705 | biostudies-literature
| S-EPMC8034238 | biostudies-literature
| S-EPMC4393226 | biostudies-literature
| S-EPMC4433564 | biostudies-literature
| S-EPMC4361392 | biostudies-literature
| S-EPMC5405195 | biostudies-literature