Unknown

Dataset Information

0

Modulation of mitochondrial function and autophagy mediates carnosine neuroprotection against ischemic brain damage.


ABSTRACT: Despite the rapidly increasing global burden of ischemic stroke, no therapeutic options for neuroprotection against stroke currently exist. Recent studies have shown that autophagy plays a key role in ischemic neuronal death, and treatments that target autophagy may represent a novel strategy in neuroprotection. We investigated whether autophagy is regulated by carnosine, an endogenous pleiotropic dipeptide that has robust neuroprotective activity against ischemic brain damage.We examined the effect of carnosine on mitochondrial dysfunction and autophagic processes in rat focal ischemia and in neuronal cultures.Autophagic pathways such as reduction of phosphorylated mammalian target of rapamycin (mTOR)/p70S6K and the conversion of microtubule-associated protein 1 light chain 3 (LC3)-I to LC3-II were enhanced in the ischemic brain. However, treatment with carnosine significantly attenuated autophagic signaling in the ischemic brain, with improvement of brain mitochondrial function and mitophagy signaling. The protective effect of carnosine against autophagy was also confirmed in primary cortical neurons.Taken together, our data suggest that the neuroprotective effect of carnosine is at least partially mediated by mitochondrial protection and attenuation of deleterious autophagic processes. Our findings shed new light on the mechanistic pathways that this exciting neuroprotective agent influences.

SUBMITTER: Baek SH 

PROVIDER: S-EPMC4211270 | biostudies-literature | 2014 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Modulation of mitochondrial function and autophagy mediates carnosine neuroprotection against ischemic brain damage.

Baek Seung-Hoon SH   Noh Ah Reum AR   Kim Kyeong-A KA   Akram Muhammad M   Shin Young-Jun YJ   Kim Eun-Sun ES   Yu Seong Woon SW   Majid Arshad A   Bae Ok-Nam ON  

Stroke 20140617 8


<h4>Background and purpose</h4>Despite the rapidly increasing global burden of ischemic stroke, no therapeutic options for neuroprotection against stroke currently exist. Recent studies have shown that autophagy plays a key role in ischemic neuronal death, and treatments that target autophagy may represent a novel strategy in neuroprotection. We investigated whether autophagy is regulated by carnosine, an endogenous pleiotropic dipeptide that has robust neuroprotective activity against ischemic  ...[more]

Similar Datasets

| S-EPMC4556686 | biostudies-literature
| S-EPMC8006459 | biostudies-literature
| S-EPMC7093414 | biostudies-literature
| S-EPMC3461004 | biostudies-literature
| S-EPMC4392363 | biostudies-literature
| S-EPMC7047798 | biostudies-literature
| S-EPMC4322069 | biostudies-literature
| S-EPMC2799533 | biostudies-literature
| S-EPMC1481664 | biostudies-literature
| S-EPMC4260762 | biostudies-literature