Project description:Population geneticists often study small numbers of carefully chosen loci, but it has become possible to obtain orders of magnitude for more data from overlaps of genome sequences. Here, we generate tens of millions of base pairs of multiple sequence alignments from combinations of three western chimpanzees, three central chimpanzees, an eastern chimpanzee, a bonobo, a human, an orangutan, and a macaque. Analysis provides a more precise understanding of demographic history than was previously available. We show that bonobos and common chimpanzees were separated approximately 1,290,000 years ago, western and other common chimpanzees approximately 510,000 years ago, and eastern and central chimpanzees at least 50,000 years ago. We infer that the central chimpanzee population size increased by at least a factor of 4 since its separation from western chimpanzees, while the western chimpanzee effective population size decreased. Surprisingly, in about one percent of the genome, the genetic relationships between humans, chimpanzees, and bonobos appear to be different from the species relationships. We used PCR-based resequencing to confirm 11 regions where chimpanzees and bonobos are not most closely related. Study of such loci should provide information about the period of time 5-7 million years ago when the ancestors of humans separated from those of the chimpanzees.
Project description:We have determined the nucleotide sequence of the 5' noncoding (NC) region of the hepatitis C virus (HCV) genome in 44 isolates from around the world. We have identified several HCV isolates with significantly greater sequence heterogeneity than reported previously within the 5' NC region. The most distantly related isolates were only 90.1% identical. Nucleotide insertions were seen in three isolates. Analysis of the nucleotide sequence from 44 HCV isolates in this study combined with that of 37 isolates reported in the literature reveals that the 5' NC region of HCV consists of highly conserved domains interspersed with variable domains. The consensus sequence was identical to the prototype HCV sequence. Nucleotide variations were found in 45 (16%) of the 282 nucleotide positions analyzed and were primarily located in three domains of significant heterogeneity (positions -239 to -222, -167 to -118, and -100 to -72). Conversely, there were three highly conserved domains consisting of 18, 22, and 63 completely invariant nucleotides (positions -263 to -246, -199 to -178, and -65 to -3, respectively). Two nucleotide domains within the 5' NC region, conserved among all HCV isolates studied to date, shared statistically significant similarity with pestivirus 5' NC sequences, providing further evidence for a close evolutionary relationship between these two groups of viruses. Additional analysis revealed the presence of short open reading frames in all HCV isolates. Our sequence analysis of the 5' NC region of the HCV genome provides additional information about conserved elements within this region and suggests a possible functional role for the region in viral replication or gene expression. These data also have implications for selection of optimal primer sequences for the detection of HCV RNA by the PCR assay.
Project description:Drug resistance resulting from reverse transcriptase (RT) mutations is one of the main obstacles to successful hepatitis B virus (HBV) therapy. Indeed, HBV treatment guidelines recommend HBV genotypic resistance testing for patients receiving nucleos(t)ide RT inhibitors (N(t)RTIs) who develop virological failure. N(t)RTI-resistance mutations at 10 RT positions have been well characterized in phenotypic studies, however, data are lacking on the relative frequency of these mutations in N(t)RTI-treated and untreated individuals. There are also few published data on the extent of amino acid variation at most of the 344 positions of HBV RT and the extent to which this variation is influenced by N(t)RTI treatment. We retrieved 23,871 HBV RT sequences from GenBank and reviewed the published reports of these sequences to ascertain the number of individuals from whom the sequences were obtained, the N(t)RTI treatments of these individuals, and the year and region of virus sampling. We then used these data to populate a relational database we named HBVrtDB. As of July 2010, HBVrtDB contained 6811 sequences from 3869 individuals reported in 281 references. Among these 3869 individuals, 73% were N(t)RTI-naïve and 27% received one or more N(t)RTIs. Among the 10 well-characterized N(t)RTI-resistance mutations, L80I/V, V173L, L180M, A181T, T184S, S202G and M204I/V were significantly associated with treatment with lamivudine, an l-nucleoside analog, and A181S/T/V and N236T were significantly associated with treatment with adefovir, an acyclic nucleoside phosphonate. A similar analysis of ten additional less well-characterized resistance mutations demonstrated a significant association with N(t)RTI treatment for four of the mutations: L82M, S85A, A200V, and Q215S. We also created an interactive program, HBVseq, to enable users to identify mutations in submitted sequences and retrieve the prevalence of these mutations in HBVrtDB according to genotype and N(t)RTI treatment. HBVrtDB and HBVseq are available at http://hivdb.stanford.edu/HBV/releaseNotes/.
Project description:Hepatitis B virus (HBV) integration into the host cell genome occurs early on in infection and reportedly induces pro-oncogenic changes in hepatocytes that drive HCC initiation. However, it remains unclear when these changes occur during hepatocarcinogenesis. Extensive expansion of hepatocyte clones with a selective advantage was shown to occur prior to cancer formation during the HBeAg-seroconversion phase of chronic HBV infection. We hypothesized that since integrations occur during the early stages of infection, cell phenotype could be altered and induce a selection advantage (e.g., through insertional mutagenesis or cis-mediated activation of downstream genes). Here, we analyzed the enrichment of genomic and functional patterns in the cellular host sequence adjacent to HBV DNA integration events. We examined 717 unique integration events detected in patients who have and have not undergone HBeAg-seroconversion (n = 41) or in an in vitro model system. We also used an in silico model to control for detection biases. We showed that the sites of HBV DNA integration were distributed throughout the entire host genome without obvious enrichment of specific structural or functional genomic features in the adjacent cellular genome during HBeAg-seroconversion. Currently, this is the most comprehensive characterization of HBV DNA integration events prior to hepatocarcinogenesis. Our results suggest no significant selection for (or against) specific cellular sites of HBV DNA integration occur during the clonal expansion phase of chronic HBV infection. Thus, HBV DNA integration events likely represent passenger events rather than active drivers of liver cancer, which was previously suggested.
Project description:We previously sequenced the 5' noncoding region of 44 isolates of hepatitis C virus (HCV), as well as the envelope 1 (E1) gene of 51 HCV isolates, and provided evidence for the existence of at least 6 major genetic groups consisting of at least 12 minor genotypes of HCV (i.e., genotypes I/1a, II/1b, III/2a, IV/2b, 2c, V/3a, 4a-4d, 5a, and 6a). We now report the complete nucleotide sequence of the putative core (C) gene of 52 HCV isolates that represent all of these 12 genotypes as well as two additional genotypes provisionally designated 4e and 4f that we identified in this study. The phylogenetic analysis of the C gene sequences was in agreement with that of the E1 gene sequences. A major division in the genetic distance was observed between HCV isolates of genotype 2 and those of the other genotypes in analysis of both the E1 and C genes. The C gene sequences of 9 genotypes have not been reported previously (i.e., genotypes 2c, 4a-4f, 5a, and 6a). Our analysis indicates that the C gene-based methods currently used to determine the HCV genotype, such as PCR with genotype-specific primers, should be revised in light of these data. We found that the predicted C gene was exactly 573 nt long in all 52 HCV isolates, with an N-terminal start codon and no in-frame stop codons. The nucleotide and predicted amino acid identities of the C gene sequences were in the range of 79.4-99.0% and 85.3-100%, respectively. Furthermore, we mapped universally conserved, as well as genotype-specific, nucleotide and deduced amino acid sequences of the C gene. The predicted C proteins of the different HCV genotypes shared the following features: (i) high content of proline residues, (ii) high content of arginine and lysine residues located primarily in three domains with 10 such residues invariant at positions 39-62, (iii) a cluster of 5 conserved tryptophan residues, (iv) two nuclear localization signals and a DNA-binding motif, (v) a potential phosphorylation site with a serine-proline motif, and (vi) three conserved hydrophilic domains that have been shown by others to contain immunogenic epitopes. Thus, we have extended analysis of the predicted C protein of HCV to all of the recognized genotypes, confirmed the existence of highly conserved regions of this important structural protein, and demonstrated that the genetic relatedness of HCV isolates is equivalent when analyzing the most conserved (i.e., C) and the most variable (i.e., E1) genes of the HCV genome.
Project description:Hepatitis E virus (HEV) is a major causative agent of acute hepatitis in developing countries. The Norway rat HEV genome consists of six open reading frames (ORFs), i.e., ORF1, ORF2, ORF3, ORF4, ORF5 and ORF6. The additional reading frame encoded protein ORF5 is attributed to life cycle of rat HEV. The ORFF5 protein's function remains undetermined. Therefore, it is of interest to analyze the ORF5 protein for its physiochemical properties, primary structure, secondary structure, tertiary structure and functional characteristics using bioinformatics tools. Analysis of the ORF5 protein revealed it as highly unstable, hydrophilic with basic pI. The ORF5 protein consisted mostly of Arg, Pro, Ser, Leu and Gly. The 3D structural homology model of the ORF5 protein generated showed mixed α/β structural fold with predominance of coils. Structural analysis revealed the presence of clefts, pores and a tunnel. This data will help in the sequence, structure and functional annotation of ORF5.
Project description:We report here the full-length genome sequence of a novel chimpanzee polyomavirus. Viral sequences were recovered from colon, bladder, and ureter tissue from a western common chimpanzee. The virus is genetically closely related to the human BK polyomavirus.
Project description:An outbreak of acute hepatitis A virus in North Carolina was linked to drinking water from a contaminated shallow spring by phylogenetic analysis of hepatitis A virus (HAV) genomic sequences. Detection of HAV and fecal indicators in the water provided useful and timely information to assist with public health prevention and control measures.
Project description:Persistent infection is a key feature of hepatitis C virus (HCV). However, chimpanzee infections with cell culture-derived viruses (JFH1 or related chimeric viruses that replicate efficiently in cell culture) have been limited to acute-transient infections with no pathogenicity. Here, we report persistent infection with chronic hepatitis in a chimpanzee challenged with cell culture-derived genotype 1a virus (H77S.2) containing 6 cell culture-adaptive mutations. Following acute-transient infection with a chimeric H77/JFH1 virus (HJ3-5), intravenous (i.v.) challenge with 10(6) FFU H77S.2 virus resulted in immediate seroconversion and, following an unusual 4- to 6-week delay, persistent viremia accompanied by alanine aminotransferase (ALT) elevation, intrahepatic innate immune responses, and diffuse hepatopathy. This first persistent infection with cell culture-produced HCV provided a unique opportunity to assess evolution of cell culture-adapted virus in vivo. Synonymous and nonsynonymous nucleotide substitution rates were greatest during the first 8 weeks of infection. Of 6 cell culture-adaptive mutations in H77S.2, Q1067R (NS3) had reverted to Q1067 and S2204I (NS5A) was replaced by T2204 within 8 weeks of infection. By 62 weeks, 4 of 6 mutations had reverted to the wild-type sequence, and all reverted to the wild-type sequence by 194 weeks. The data suggest H77S.2 virus has greater potential for persistence and pathogenicity than JFH1 and demonstrate both the capacity of a nonfit virus to persist for weeks in the liver in the absence of detectable viremia as well as strong selective pressure against cell culture-adaptive mutations in vivo.This study shows that mutations promoting the production of infectious genotype 1a HCV in cell culture have the opposite effect and attenuate replication in the liver of the only fully permissive animal species other than humans. It provides the only example to date of persistent infection in a chimpanzee challenged with cell culture-produced virus and provides novel insight into the forces shaping molecular evolution of that virus during 5 years of persistent infection. It demonstrates that a poorly fit virus can replicate for weeks within the liver in the absence of detectable viremia, an observation that expands current concepts of HCV pathogenesis and that is relevant to relapses observed with direct-acting antiviral therapies.
Project description:IntroductionThe Hepatitis Delta Virus (HDV) is a defective, single-stranded RNA virusoid encoding for a single protein, the Hepatitis Delta Antigen (HDAg), which requires the hepatitis B virus (HBV) envelope protein (HBsAg) for its transmission. Currently, hepatitis D is the most aggressive form of viral hepatitis and treatment options are limited. Worldwide 12 million people are chronically infected with HDV being at high risk for progression to cirrhosis and development of liver cancer.ObjectivesAlthough it is well established that Mongolia is the country with the highest prevalence of HDV infections, the information on the molecular epidemiology and factors contributing to HDV sequence diversity are largely unclear. The aim of the study was to characterize the sequence diversity of HDV in rural areas from Mongolia and to determine the extent of HLA class I-associated selection pressure.Patients and methodsFrom the HepMongolia cohort from rural areas in Mongolia, 451 HBsAg-positive individuals were selected and anti-HDV, HDV-RNA and the sequence of the large HDAg was determined. For all individuals the HLA class I locus was genotyped. Residues under selection pressure in the presence of individual HLA class I types were identified with the recently published analysis tool HAMdetector.ResultsOf 431 HBsAg positive patients, 281 were anti-HDV positive (65%), and HDV-RNA could be detected in 207 of 281 (74%) of patients. The complete large HDAg was successfully sequenced from 131 samples. Phylogenetic analysis revealed that all Mongolian HDV isolates belong to genotype 1, however, they separate into several different clusters without clear regional association. In turn, from phylogeny there is strong evidence for recent local transmission events. Importantly, we found multiple residues with strong support for HLA class I-associated selection pressure consistent with a functional CD8+ T cell response directed against HDV.ConclusionHDV isolates from Mongolia are highly diverse. The molecular epidemiology suggests circulation of multiple subtypes and provides evidence for ongoing recent transmissions.