Project description:Antibiotic resistance has grown steadily in Vibrio cholerae over the last few decades to become a major threat in countries affected by cholera. Multi-drug resistance (MDR) spreads among clinical and environmental V. cholerae strains by lateral gene transfer often mediated by integrative and conjugative elements (ICEs) of the SXT/R391 family. However, in a few reported but seemingly isolated cases, MDR in V. cholerae was shown to be associated with other self-transmissible genetic elements such as conjugative plasmids. IncA/C conjugative plasmids are often found associated with MDR in isolates of Enterobacteriaceae. To date, IncA/C plasmids have not been commonly found in V. cholerae or other species of Vibrio. Here we present a detailed analysis of pVCR94?X derived from pVCR94, a novel IncA/C conjugative plasmid identified in a V. cholerae clinical strain isolated during the 1994 Rwandan cholera outbreak. pVCR94 was found to confer resistance to sulfamethoxazole, trimethoprim, ampicillin, streptomycin, tetracycline, and chloramphenicol and to transfer at very high frequency. Sequence analysis revealed its mosaic nature as well as high similarity of the core genes responsible for transfer and maintenance with other IncA/C plasmids and ICEs of the SXT/R391 family. Although IncA/C plasmids are considered a major threat in antibiotics resistance, their basic biology has received little attention, mostly because of the difficulty to genetically manipulate these MDR conferring elements. Therefore, we developed a convenient derivative from pVCR94, pVCR94? X, a 120.5-kb conjugative plasmid which only codes for sulfamethoxazole resistance. Using pVCR94? X, we identified the origin of transfer (oriT) and discovered an essential gene for transfer, both located within the shared backbone, allowing for an annotation update of all IncA/C plasmids. pVCR94? X may be a useful model that will provide new insights on the basic biology of IncA/C conjugative plasmids.
Project description:Cephalosporin-resistant Vibrio alginolyticus was first isolated from food products, with ?-lactamases encoded by blaPER-1, blaVEB-1, and blaCMY-2 being the major mechanisms mediating their cephalosporin resistance. The complete sequence of a multidrug resistance plasmid, pVAS3-1, harboring the blaCMY-2 and qnrVC4 genes was decoded in this study. Its backbone exhibited genetic homology to known IncA/C plasmids recoverable from members of the family Enterobacteriaceae, suggesting its possible origin in Enterobacteriaceae.
Project description:Mobile genetic elements play a pivotal role in the adaptation of bacterial populations, allowing them to rapidly cope with hostile conditions, including the presence of antimicrobial compounds. IncA/C conjugative plasmids (ACPs) are efficient vehicles for dissemination of multidrug resistance genes in a broad range of pathogenic species of Enterobacteriaceae ACPs have sporadically been reported in Vibrio cholerae, the infectious agent of the diarrheal disease cholera. The regulatory network that controls ACP mobility ultimately depends on the transcriptional activation of multiple ACP-borne operons by the master activator AcaCD. Beyond ACP conjugation, AcaCD has also recently been shown to activate the expression of genes located in the Salmonella genomic island 1 (SGI1). Here, we describe MGIVchHai6, a novel and unrelated mobilizable genomic island (MGI) integrated into the 3' end of trmE in chromosome I of V. cholerae HC-36A1, a non-O1/non-O139 multidrug-resistant clinical isolate recovered from Haiti in 2010. MGIVchHai6 contains a mercury resistance transposon and an integron In104-like multidrug resistance element similar to the one of SGI1. We show that MGIVchHai6 excises from the chromosome in an AcaCD-dependent manner and is mobilized by ACPs. Acquisition of MGIVchHai6 confers resistance to β-lactams, sulfamethoxazole, tetracycline, chloramphenicol, trimethoprim, and streptomycin/spectinomycin. In silico analyses revealed that MGIVchHai6-like elements are carried by several environmental and clinical V. cholerae strains recovered from the Indian subcontinent, as well as from North and South America, including all non-O1/non-O139 clinical isolates from Haiti. Vibrio cholerae, the causative agent of cholera, remains a global public health threat. Seventh-pandemic V. cholerae acquired multidrug resistance genes primarily through circulation of SXT/R391 integrative and conjugative elements. IncA/C conjugative plasmids have sporadically been reported to mediate antimicrobial resistance in environmental and clinical V. cholerae isolates. Our results showed that while IncA/C plasmids are rare in V. cholerae populations, they play an important yet insidious role by specifically propagating a new family of genomic islands conferring resistance to multiple antibiotics. These results suggest that nonepidemic V. cholerae non-O1/non-O139 strains bearing these genomic islands constitute a reservoir of transmissible resistance genes that can be propagated by IncA/C plasmids to V. cholerae populations in epidemic geographical areas as well to pathogenic species of Enterobacteriaceae We recommend future epidemiological surveys take into account the circulation of these genomic islands.
Project description:In the family Enterobacteriaceae, plasmids have been classified according to 27 incompatibility (Inc) or replicon types that are based on the inability of different plasmids with the same replication mechanism to coexist in the same cell. Certain replicon types such as IncA/C are associated with multidrug resistance (MDR). We developed a microarray that contains 286 unique 70-mer oligonucleotide probes based on sequences from five IncA/C plasmids: pYR1 (Yersinia ruckeri), pPIP1202 (Yersinia pestis), pP99-018 (Photobacterium damselae), pSN254 (Salmonella enterica serovar Newport), and pP91278 (Photobacterium damselae). DNA from 59 Salmonella enterica isolates was hybridized to the microarray and analyzed for the presence or absence of genes. These isolates represented 17 serovars from 14 different animal hosts and from different geographical regions in the United States. Qualitative cluster analysis was performed using CLUSTER 3.0 to group microarray hybridization results. We found that IncA/C plasmids occurred in two lineages distinguished by a major insertion-deletion (indel) region that contains genes encoding mostly hypothetical proteins. The most variable genes were represented by transposon-associated genes as well as four antimicrobial resistance genes (aphA, merP, merA, and aadA). Sixteen mercury resistance genes were identified and highly conserved, suggesting that mercury ion-related exposure is a stronger pressure than anticipated. We used these data to construct a core IncA/C genome and an accessory genome. The results of our studies suggest that the transfer of antimicrobial resistance determinants by transfer of IncA/C plasmids is somewhat less common than exchange within the plasmids orchestrated by transposable elements, such as transposons, integrating and conjugative elements (ICEs), and insertion sequence common regions (ISCRs), and thus pose less opportunity for exchange of antimicrobial resistance.
Project description:Cholera was absent from the island of Hispaniola at least a century before an outbreak that began in Haiti in the fall of 2010. Pulsed-field gel electrophoresis (PFGE) analysis of clinical isolates from the Haiti outbreak and recent global travelers returning to the United States showed indistinguishable PFGE fingerprints. To better explore the genetic ancestry of the Haiti outbreak strain, we acquired 23 whole-genome Vibrio cholerae sequences: 9 isolates obtained in Haiti or the Dominican Republic, 12 PFGE pattern-matched isolates linked to Asia or Africa, and 2 nonmatched outliers from the Western Hemisphere. Phylogenies for whole-genome sequences and core genome single-nucleotide polymorphisms showed that the Haiti outbreak strain is genetically related to strains originating in India and Cameroon. However, because no identical genetic match was found among sequenced contemporary isolates, a definitive genetic origin for the outbreak in Haiti remains speculative.
Project description:Multidrug resistance (MDR) plasmids belonging to the IncA/C plasmid family are widely distributed among Salmonella and other enterobacterial isolates from agricultural sources and have, at least once, also been identified in a drug-resistant Yersinia pestis isolate (IP275) from Madagascar. Here, we present the complete plasmid sequences of the IncA/C reference plasmid pRA1 (143,963 bp), isolated in 1971 from the fish pathogen Aeromonas hydrophila, and of the cryptic IncA/C plasmid pRAx (49,763 bp), isolated from Escherichia coli transconjugant D7-3, which was obtained through pRA1 transfer in 1980. Using comparative sequence analysis of pRA1 and pRAx with recent members of the IncA/C plasmid family, we show that both plasmids provide novel insights into the evolution of the IncA/C MDR plasmid family and the minimal machinery necessary for stable IncA/C plasmid maintenance. Our results indicate that recent members of the IncA/C plasmid family evolved from a common ancestor, similar in composition to pRA1, through stepwise integration of horizontally acquired resistance gene arrays into a conserved plasmid backbone. Phylogenetic comparisons predict type IV secretion-like conjugative transfer operons encoded on the shared plasmid backbones to be closely related to a group of integrating conjugative elements, which use conjugative transfer for horizontal propagation but stably integrate into the host chromosome during vegetative growth. A hipAB toxin-antitoxin gene cluster found on pRA1, which in Escherichia coli is involved in the formation of persister cell subpopulations, suggests persistence as an early broad-spectrum antimicrobial resistance mechanism in the evolution of IncA/C resistance plasmids.
Project description:To increase understanding of drug-resistant Vibrio cholerae, we studied selected molecular mechanisms of antimicrobial drug resistance in the 2010 Haiti V. cholerae outbreak strain. Most resistance resulted from acquired genes located on an integrating conjugative element showing high homology to an integrating conjugative element identified in a V. cholerae isolate from India.
Project description:Epidemic cholera was reported in Haiti in 2010, with no information available on the occurrence or geographic distribution of toxigenic Vibrio cholerae in Haitian waters. In a series of field visits conducted in Haiti between 2011 and 2013, water and plankton samples were collected at 19 sites. Vibrio cholerae was detected using culture, polymerase chain reaction, and direct viable count methods (DFA-DVC). Cholera toxin genes were detected by polymerase chain reaction in broth enrichments of samples collected in all visits except March 2012. Toxigenic V. cholerae was isolated from river water in 2011 and 2013. Whole genome sequencing revealed that these isolates were a match to the outbreak strain. The DFA-DVC tests were positive for V. cholerae O1 in plankton samples collected from multiple sites. Results of this survey show that toxigenic V. cholerae could be recovered from surface waters in Haiti more than 2 years after the onset of the epidemic.
Project description:ObjectivesTo obtain a broad molecular epidemiological characterization of plasmid-mediated AmpC β-lactamase CMY-2 in Escherichia coli isolates from food animals in China.MethodsA total of 1083 E. coli isolates from feces, viscera, blood, drinking water, and sub-surface soil were examined for the presence of CMY-2 β-lactamases. CMY-2-producing isolates were characterized as follows: the blaCMY-2 genotype was determined using PCR and sequencing, characterization of the blaCMY-2 genetic environment, plasmid sizing using S1 nuclease pulsed-field gel electrophoresis (PFGE), PCR-based replicon typing, phylogenetic grouping, XbaI-PFGE, and multi-locus sequence typing (MLST).ResultsAll 31 CMY-2 producers were only detected in feces, and presented with multidrug resistant phenotypes. All CMY-2 strains also co-harbored genes conferring resistance to other antimicrobials, including extended spectrum β-lactamases genes (blaCTX-M-14 or blaCTX-M-55), plasmid-mediated quinolone resistance determinants (qnr, oqxA, and aac-(6')-Ib-cr), floR and rmtB. The co-transferring of blaCMY-2 with qnrS1 and floR (alone and together) was mainly driven by the Inc A/C type plasmid, with sizes of 160 or 200 kb. Gene cassette arrays inserted in the class 1 or class 2 integron were amplified among 12 CMY-2 producers. CMY-2 producers belonged to avirulent groups B1 (n = 12) and A (n = 11), and virulent group D (n = 8). There was a good correlation between phylogenetic groups and sequence types (ST). Twenty-four STs were identified, of which the ST complexes (STC) 101/B1 (n = 6), STC10/A (n = 5), and STC155/B1 (n = 3) were dominant.ConclusionsCMY-2 is the dominant AmpC β-lactamase in food animals and is associated with a transferable replicon IncA/C plasmid in the STC101, STC10, and STC155 strains.
Project description:In October, 2010, epidemic cholera was reported for the first time in Haiti in over 100 years. Establishment of cholera endemicity in Haiti will be dependent in large part on the continued presence of toxigenic V. cholerae O1 in aquatic reservoirs. The rugose phenotype of V. cholerae, characterized by exopolysaccharide production that confers resistance to environmental stress, is a potential contributor to environmental persistence. Using a microbiologic medium promoting high-frequency conversion of smooth to rugose (S-R) phenotype, 80 (46.5%) of 172 V. cholerae strains isolated from clinical and environmental sources in Haiti were able to convert to a rugose phenotype. Toxigenic V. cholerae O1 strains isolated at the beginning of the epidemic (2010) were significantly less likely to shift to a rugose phenotype than clinical strains isolated in 2012/2013, or environmental strains. Frequency of rugose conversion was influenced by incubation temperature and time. Appearance of the biofilm produced by a Haitian clinical rugose strain (altered biotype El Tor HC16R) differed from that of a typical El Tor rugose strain (N16961R) by confocal microscopy. On whole-genome SNP analysis, there was no phylogenetic clustering of strains showing an ability to shift to a rugose phenotype. Our data confirm the ability of Haitian clinical (and environmental) strains to shift to a protective rugose phenotype, and suggest that factors such as temperature influence the frequency of transition to this phenotype.