Unknown

Dataset Information

0

Concerted loss of TGF?-mediated proliferation control and E-cadherin disrupts epithelial homeostasis and causes oral squamous cell carcinoma.


ABSTRACT: Although the etiology of squamous cell carcinomas of the oral mucosa is well understood, the cellular origin and the exact molecular mechanisms leading to their formation are not. Previously, we observed the coordinated loss of E-cadherin (CDH1) and transforming growth factor beta receptor II (TGFBR2) in esophageal squamous tumors. To investigate if the coordinated loss of Cdh1 and Tgfbr2 is sufficient to induce tumorigenesis in vivo, we developed two mouse models targeting ablation of both genes constitutively or inducibly in the oral-esophageal epithelium. We show that the loss of both Cdh1 and Tgfbr2 in both models is sufficient to induce squamous cell carcinomas with animals succumbing to the invasive disease by 18 months of age. Advanced tumors have the ability to invade regional lymph nodes and to establish distant pulmonary metastasis. The mouse tumors showed molecular characteristics of human tumors such as overexpression of Cyclin D1. We addressed the question whether TGF? signaling may target known stem cell markers and thereby influence tumorigenesis. From our mouse and human models, we conclude that TGF? signaling regulates key aspects of stemness and quiescence in vitro and in vivo. This provides a new explanation for the importance of TGF? in mucosal homeostasis.

SUBMITTER: Andl T 

PROVIDER: S-EPMC4216061 | biostudies-literature | 2014 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Concerted loss of TGFβ-mediated proliferation control and E-cadherin disrupts epithelial homeostasis and causes oral squamous cell carcinoma.

Andl Thomas T   Le Bras Grégoire F GF   Richards Nicole F NF   Allison Gillian L GL   Loomans Holli A HA   Washington M Kay MK   Revetta Frank F   Lee Rebecca K RK   Taylor Chase C   Moses Harold L HL   Andl Claudia D CD  

Carcinogenesis 20140918 11


Although the etiology of squamous cell carcinomas of the oral mucosa is well understood, the cellular origin and the exact molecular mechanisms leading to their formation are not. Previously, we observed the coordinated loss of E-cadherin (CDH1) and transforming growth factor beta receptor II (TGFBR2) in esophageal squamous tumors. To investigate if the coordinated loss of Cdh1 and Tgfbr2 is sufficient to induce tumorigenesis in vivo, we developed two mouse models targeting ablation of both gene  ...[more]

Similar Datasets

| S-EPMC3806036 | biostudies-literature
| S-EPMC3479144 | biostudies-literature
| S-EPMC8756561 | biostudies-literature
| S-EPMC6838363 | biostudies-literature
| S-EPMC6127877 | biostudies-literature
| S-EPMC3722719 | biostudies-other
| S-EPMC6246901 | biostudies-literature
2022-03-25 | GSE196138 | GEO
| S-EPMC4373756 | biostudies-literature
| S-EPMC6496163 | biostudies-literature