Unknown

Dataset Information

0

Hyper-brain networks support romantic kissing in humans.


ABSTRACT: Coordinated social interaction is associated with, and presumably dependent on, oscillatory couplings within and between brains, which, in turn, consist of an interplay across different frequencies. Here, we introduce a method of network construction based on the cross-frequency coupling (CFC) and examine whether coordinated social interaction is associated with CFC within and between brains. Specifically, we compare the electroencephalograms (EEG) of 15 heterosexual couples during romantic kissing to kissing one's own hand, and to kissing one another while performing silent arithmetic. Using graph-theory methods, we identify theta-alpha hyper-brain networks, with alpha serving a cleaving or pacemaker function. Network strengths were higher and characteristic path lengths shorter when individuals were kissing each other than when they were kissing their own hand. In both partner-oriented kissing conditions, greater strength and shorter path length for 5-Hz oscillation nodes correlated reliably with greater partner-oriented kissing satisfaction. This correlation was especially strong for inter-brain connections in both partner-oriented kissing conditions but not during kissing one's own hand. Kissing quality assessed after the kissing with silent arithmetic correlated reliably with intra-brain strength of 10-Hz oscillation nodes during both romantic kissing and kissing with silent arithmetic. We conclude that hyper-brain networks based on CFC may capture neural mechanisms that support interpersonally coordinated voluntary action and bonding behavior.

SUBMITTER: Muller V 

PROVIDER: S-EPMC4222975 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

Hyper-brain networks support romantic kissing in humans.

Müller Viktor V   Lindenberger Ulman U  

PloS one 20141106 11


Coordinated social interaction is associated with, and presumably dependent on, oscillatory couplings within and between brains, which, in turn, consist of an interplay across different frequencies. Here, we introduce a method of network construction based on the cross-frequency coupling (CFC) and examine whether coordinated social interaction is associated with CFC within and between brains. Specifically, we compare the electroencephalograms (EEG) of 15 heterosexual couples during romantic kiss  ...[more]

Similar Datasets

| S-EPMC6504087 | biostudies-literature
| S-EPMC7264706 | biostudies-literature
| S-EPMC5439266 | biostudies-literature
| S-EPMC5647506 | biostudies-literature
| S-EPMC4577153 | biostudies-other
| S-EPMC1904171 | biostudies-literature
| S-EPMC6865468 | biostudies-literature
| S-EPMC7363111 | biostudies-literature
| S-EPMC8740914 | biostudies-literature
| S-EPMC4536016 | biostudies-literature