Shape-engineering of self-assembled organic single microcrystal as optical microresonator for laser applications.
Ontology highlight
ABSTRACT: Single micro/nanocrystals based on ?-conjugated organic molecules have caused tremendous interests in the optoelectronic applications in laser, optical waveguide, nonlinear optics, and field effect transistors. However, the controlled synthesis of these organic micro/nanocrystals with regular shapes is very difficult to achieve, because the weak interaction (van der Waals' force, ca. 5 kJ/mol) between organic molecules could not dominate the kinetic process of crystal growth. Herein, we develop an elaborate strategy, selective adhesion to organic crystal plane by the hydrogen-bonding interaction (ca. 40 kJ/mol), for modulating the kinetic process of the formation of microcrystal, which leads to the self-assembly of one organic molecule 3-[4-(dimethylamino)phenyl]-1-(2-hy-droxyphenyl)prop-2-en-1-on (HDMAC) into one-dimensional (1D) microwires and 2D microdisks respectively. Furthermore, these as-prepared microcrystals demonstrate shape-dependent microresonator properties that 1D microwires act as Fabry-Pérot (FP) mode lasing resonator and 2D microdisks provide the whispering-gallery-mode (WGM) resonator for lasing oscillator. More significantly, through the investigation of the size-effect on the laser performance, single-mode lasing at red wavelength was successfully achieved in the self-assembled 2D organic microdisk at room temperature. These easily fabricated organic single-crystalline microcrystals with controlled shapes are the natural laser sources, which offer considerable promise for the multi-functionalities of coherent light devices integrated on the optics microchip.
SUBMITTER: Wang X
PROVIDER: S-EPMC4228325 | biostudies-literature | 2014 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA