Project description:UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase is an α2β2γ2 hexameric enzyme that catalyzes the synthesis of the mannose 6-phosphate targeting signal on lysosomal hydrolases. Mutations in the α/β subunit precursor gene cause the severe lysosomal storage disorder mucolipidosis II (ML II) or the more moderate mucolipidosis III alpha/beta (ML III α/β), while mutations in the γ subunit gene cause the mildest disorder, mucolipidosis III gamma (ML III γ). Here we report neurologic consequences of mouse models of ML II and ML III γ. The ML II mice have a total loss of acid hydrolase phosphorylation, which results in depletion of acid hydrolases in mesenchymal-derived cells. The ML III γ mice retain partial phosphorylation. However, in both cases, total brain extracts have normal or near normal activity of many acid hydrolases reflecting mannose 6-phosphate-independent lysosomal targeting pathways. While behavioral deficits occur in both models, the onset of these changes occurs sooner and the severity is greater in the ML II mice. The ML II mice undergo progressive neurodegeneration with neuronal loss, astrocytosis, microgliosis and Purkinje cell depletion which was evident at 4 months whereas ML III γ mice have only mild to moderate astrocytosis and microgliosis at 12 months. Both models accumulate the ganglioside GM2, but only ML II mice accumulate fucosylated glycans. We conclude that in spite of active mannose 6-phosphate-independent targeting pathways in the brain, there are cell types that require at least partial phosphorylation function to avoid lysosomal dysfunction and the associated neurodegeneration and behavioral impairments.
Project description:Mucolipidosis II (ML-II) is a fatal inherited metabolic disease caused by deficiency of GlcNAc-phosphotransferase, which plays a role in generating the mannose 6-phosphate recognition marker on lysosomal enzymes. In ML-II, many lysosomal acid hydrolases are mistargeted out of cells, and lysosomes become filled with undigested substrates, which explains inclusion cell disease as an alternative name for this disease. In this study, we revealed various cellular phenotypes in ML-II skin fibroblasts. We quantitated phospholipid and cholesterol within cells and showed ~2-fold accumulation in ML-II as compared with normal cells. Lysosomal pH of ML-II cells was higher than that of normal cells (5.29 ± 0.08 versus 4.79 ± 0.10, p < 0.001). The proliferated lysosomes in ML-II cells were accumulated ~3-fold in amount as compared with normal cells. Intracellular logistics including endocytosis and mannose 6-phosphate receptor recycling were impaired in ML-II cells. To confirm whether these ML-II cellular phenotypes derive from deficient lysosomal acid hydrolases within lysosomes, we performed supplementation of lysosomal enzymes using a partially purified total enzyme mixture, which was derived from the conditioned culture medium of normal skin fibroblasts after NH(4)Cl treatment. This supplementation corrected all of the previously described ML-II phenotypes. In addition, the autophagic and mitochondrial impairment that we have previously reported improved, and inclusion bodies disappeared on electron micrography following total lysosomal enzyme supplementation. Our results indicate that various cellular phenotypes in ML-II are caused by the deficiency of many lysosomal enzymes and massive accumulation of undigested substrates.
Project description:Investigation of the binding characteristics of acid beta-D-galactosidase, N-acetyl-beta-D-glucosaminidase, alpha-D-galactosidase and alpha-L-fucosidase from patients with mucolipidosis II and mucolipidosis III to concanavalin A--Sepharose 4B revealed a 2--10-fold decrease in the proportion of enzyme activities from patients with mucolipidoses II and III that adsorbed on the lectin. Neuraminidase treatment of the unadsorbed enzyme fraction did not significantly increased the proportion of enzyme activities that bound to the concanavalin A--Sepharose 4B. Characterization of acid beta-D-galactosidase from the adsorbed and unadsorbed enzyme fractions of mucolipidosis II and mucolipidosis III patients demonstrated identical apparent Km values of 0.22 mM with respect to 4-methylumbelliferyl beta-D-galactopyranoside, altered pH--activity profiles and heterogeneous isoelectric-focusing patterns. The results of this study support the suggestion of an alteration of a post-translational modification (possibly glycosylation) occurring in mucolipidosis II and mucolipidosis III common to the lysosomal hydrolases that affects the mannoserelated properties of these enzymes.
Project description:Most lysosomal storage diseases (LSDs) are life-threatening genetic diseases. The pathogenesis of these diseases is poorly understood. Induced pluripotent stem (iPS) cell technology offers new opportunities for both mechanistic studies and development of stem cell- based therapies. Here we report the generation of disease-specific iPS cells from mouse models of Fabry disease, globoid cell leukodystrophy (GLD), and mucopolysaccharidosis VII (MPSVII). These mouse model-derived iPS cells showed defects in disease-specific enzyme activities and significant accumulation of substrates for these enzymes. In the lineage-directed differentiation studies, Fabry-iPS and GLD-iPS cells were efficiently differentiated into disease-relevant cell types, such as cardiomyocytes and neural stem cells, which might be useful in mechanistic and therapeutic studies. Notably, MPSVII-iPS cells demonstrated a markedly impaired ability to form embryoid bodies (EBs) in vitro. MPSVII-EBs exibited elevated levels of hyaluronan and its receptor CD44, and markedly reduced expression levels of E-cadherin and cell-proliferating marker. Partial correction of enzyme deficiency in MSPVII-iPS cells led to improved EB formation and reversal of aberrant protein expression. These data indicate a potential mechanism for the partial lethality of MPSVII mice in utero, and suggest a possible abnormality of embryonic development in MPSVII patients. Thus, our study demonstrates the unique promise of iPS cells for studying the pathogenesis and treatment of LSDs.
Project description:Lysosomal storage disorders are rare inborn errors of metabolism, with a combined incidence of 1 in 1500 to 7000 live births. These relatively rare disorders are seldom considered when evaluating a sick newborn. A significant number of the >50 different lysosomal storage disorders, however, do manifest in the neonatal period and should be part of the differential diagnosis of several perinatal phenotypes. We review the earliest clinical features, diagnostic tests, and treatment options for lysosomal storage disorders that can present in the newborn. Although many of the lysosomal storage disorders are characterized by a range in phenotypes, the focus of this review is on the specific symptoms and clinical findings that present in the perinatal period, including neurologic, respiratory, endocrine, and cardiovascular manifestations, dysmorphic features, hepatosplenomegaly, skin or ocular involvement, and hydrops fetalis/congenital ascites. A greater awareness of these features may help to reduce misdiagnosis and promote the early detection of lysosomal storage disorders. Implementing therapy at the earliest stage possible is crucial for several of the lysosomal storage disorders; hence, an early appreciation of these disorders by physicians who treat newborns is essential.
Project description:The lysosomal storage disorders are a clinically heterogeneous group of inborn errors of metabolism, associated with the accumulation of incompletely degraded macromolecules within several cellular sites. Affected individuals present with a broad range of clinical problems, including hepatosplenomegaly and skeletal dysplasia. Onset of symptoms may range from birth to adulthood. Most are associated with neurologic features. Later-onset forms are often misdiagnosed as symptoms, which might include psychiatric manifestations, are slowly progressive, and may precede other neurologic or systemic features. Symptomatic care, which remains the mainstay for most subtypes, can lead to significant improvement in quality of life.
Project description:Mucolipidosis Type III, or pseudo-Hurler polydystrophy, is a rare genetic abnormality, the result of a mutation to one of two genes that encode the hexameric protein N-acetylglucosaminyl-1-phosphotransferase (Glc-NAc-PT). The abnormality results in the accumulation of unprocessed macromolecules in cell and tissue compartments throughout the body. In this case report, we describe the clinical and radiographic findings of a 15-year-old male with this disorder. He presented with bilateral ectopically developing mandibular molar teeth with enlarged follicles and multiple joint involvement, including the temporomandibular joints. The patient underwent surgical removal of the molar teeth and curettage of the associated follicles. The subsequent histopathological examination of the tissues revealed hyperplastic follicles suggestive of dentigerous cysts. This report presents the plain film and cone beam CT examinations of the patient.
Project description:Mucopolysaccharidoses (MPSs) and mucolipidosis II and III (ML II and III) often manifest with orofacial (progressive) abnormalities, which may have a major impact on quality of life. However, because these patients have multiple somatic health issues, orofacial problems are easily overlooked in clinical practice and available literature on this topic solely consists of case reports, small case series, and small cohort studies. The aim of this systematic review was to gain more insight in the nature and extent of orofacial abnormalities in MPS, ML II, and III. A systematic review of all previously published articles addressing orofacial abnormalities in MPS, ML II, and III was performed. Both clinical studies and case reports were included. Outcome was the described orofacial abnormalities, subdivided into abnormalities of the face, maxilla, mandible, soft tissues, teeth, and occlusion. The search resulted in 57 articles, describing orofacial features in 340 patients. Orofacial abnormalities were present in all subtypes of MPS, ML II, and III, and consisted of thickened lips, a hypoplastic midface, a high-arched palate, hypoplastic condyles, coronoid hyperplasia, macroglossia, gingival hyperplasia, thick dental follicles, dentigerous cysts, misshapen teeth, enamel defects, and open bite. Orofacial abnormalities are present in all subtypes of MPS, ML II, and III. As orofacial abnormalities may cause complaints, evaluation of orofacial health should be part of routine clinical care.